成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

人工智能項目的“防坑”指南

人工智能
本文源自我自己多年的AI早期項目(天使輪、A輪)投資經驗和人工智能領域朋友們的創業經驗總結而成。如果按照本文邏輯投資,相信只要正確運用,絕對可以投出年化回報率不錯又相對安全穩定的項目。

互聯網和移動互聯網時代的“商業模式創新”帶來的投資紅利,隨著宏觀經濟環境、金融環境、市場和技術的發展,已經不再是未來十年的投資主流了。

人工智能技術已經成為了未來8-10年非常好的投資機會,在這個領域的投資機會,即使用“遍地是黃金”來形容也不為過。

然而,作為一個多年關注并踐行人工智能投資的早期風險投資人,我發現在人工智能投資過程中,最難的事甚至不是判斷哪些項目具備投資價值,而是找到志同道合的投資伙伴。

因為有太多在互聯網、移動互聯網時代有過成功體驗的投資人, 還沒有意識到人工智能和互聯網、移動互聯網本質上的不同,以至于還在用互聯網的投資思維去考評人工智能項目,這樣得到的結論往往和項目價值南轅北轍,會錯失好的投資機會。 

1

本文源自我自己多年的AI早期項目(天使輪、A輪)投資經驗和人工智能領域朋友們的創業經驗總結而成。

如果按照本文邏輯投資,相信只要正確運用,絕對可以投出年化回報率不錯又相對安全穩定的項目。

但需要說明的一點,如果您想投的是具有革命性的劃時代意義AI項目,那么請不要參考下列觀點。

人工智能項目“六投”

▌一投:從垂直行業入手,而不是上來就做大項目

互聯網行業,要想獲得投資人的青睞,往往是故事要大而美,要講規模,講對人類社會生活的革命性變化,但AI行業其實大多數時候應該反其道而行之。

為什么這么說,因為AI和互聯網不同,互聯網是基于海量用戶已經在線這個前提,而對于海量用戶而言,用戶與用戶之間很容易找到相似點并歸類,隨便找到一類用戶就是幾千萬上億人;

同時,傳統互聯網其實要解決的只是簡單的信息不對稱問題,O2O項目雖然嵌入了一定的生產服務流程,但著眼的關鍵點還是信息不對稱,有了好的創意,技術和工程上的問題都不難解決。

因此,互聯網項目很容易放量做出規模,也只有規?;庞型顿Y價值。

AI則完全不同,它要解決的不是信息不對稱問題,是對現實環境的感知,以及決策問題。

如果說感知還比較容易,那么我想每個人都有親身體驗,做決策、做選擇是最難的。

而當前的人工智能技術,其水準又只能稱作是“解決單一問題能力”級別。

那么好了,通用型大項目往往涉及復雜的多種因素決策,遠超出目前人工智能的能力范圍,能實際落地的專用型項目則天然不具備“大”這個屬性。 

2

當然,不能否認有些具有規?;刭|的大項目,例如基于語音識別、圖像識別系列技術的項目,也具備廣泛使用的通用性,這就遇到了第二個問題,此類項目對創業團隊運作管理能力的要求,遠遠超過類似規模的互聯網項目,因為AI是深度與整個服務領域融和的。

如果一個創業團隊,上來就做改變人類生產生活的大項目,一般來說,團隊是沒有去匹配大項目的能力的,包括技術、資源、資金、管理能力等等。

更重要的是,凡是綜合性大項目,意味著用戶預期極高,而項目實施難度極大,項目失敗概率極高(但是如果您確信自己要投資的是微軟、谷歌這一類劃時代創造性項目,那么還必須投這種)。

譬如說,對于AI+Fintech,很多人都想做智能投顧,其實想做這個事的公司很多,甚至諾貝爾獎獲得者也不少,沒一個成功的,而反過來,如果做一個相對更加簡單的主題,例如AI輔助金融監管,使用AI把零散的上市公司數據結構化,比智能投顧的商業模式一定更加接近成功。

因為這是一個封閉的單一主題,適合AI技術當前水平,適合初創團隊運作。

反過來,如果一個團隊從某個垂直領域入手,其實是既符合早期團隊資源運作能力,又符合人工智能當前技術水平的,因為目前的人工智能實在很弱小,最擅長解決的只是批量化智能替代重復勞動的工作。

垂直領域應用最為適合,同時,垂直領域應用一般都是ToB類,很容易找到典型頭部客戶,以及客戶的典型剛需需求,也就意味著項目的落地能力極強,是投資的好對象。

除此之外,國內特殊的營商環境也需要考慮,垂直領域的項目,其應用效果往往立竿見影,在AI還沒有被客戶群體廣泛深刻認知之前,訂單往往早期以合作項目制呈現,而大項目實施周期和驗證周期都很長,甚至于可能遠長于客戶主管領導在該崗位上的任職周期。

如果你是客戶領導,擺在面前兩個從未合作過的創業公司,一個做某個具體智能項目,一年實施完畢,效果立竿見影,投入也少;一個做大而全的智能項目,實施要幾年,效果更久才能看到,投入又高。

作為領導,你會選哪個呢?

▌第二投:明確垂直領域應用場景

對于一個AI創業團隊,找得到垂直領域還不夠,必須有明確的應用場景。

例如說,大家都可以聲稱自己在做AR+AI+電網的項目,但是到底用在什么場景呢?是電網哪個部門來買單呢?買單部門的支付能力強不強呢?這是最考驗項目基本功,也是投資人判斷項目價值的關鍵。

如果有很明確的場景,例如說遠程作業指導,例如說巡檢,而且是明確在何種條件下的作業指導和巡檢,意味著創業團隊在這個領域已經有了很深的耕耘,能夠精確把握住客戶的需求,并且形成了有效的解決方案,還知道要做成這一單生意,究竟應該和誰去談,這一單生意是不是電網的好生意。

例如說,給培訓部門做項目,從收入預期上看就遠不如給生產部門做項目,因為培訓部門是個成本單位,每年的開銷預算有限;而生產部門是個利潤單位,只要能節本增效,花錢上AI項目就是賺錢,能花肯定花。

這些沒有明確的應用場景,是沒有辦法去一步步細化,最終判斷項目質量的。

再舉個例子,目前AI+醫療影像的項目極多,但是大多數項目都瞄準了為影像科提供服務,殊不知其實這樣是動了影像科醫生的奶酪,你用AI替代了人家的工作,就意味著不需要那么多醫生,偏偏影像科還是你買單的客戶,有人愿意花錢把自己買出局嗎?

這樣的產品一定不好銷售。

反過來,做一個給內科醫生用的,AI+醫療影像的項目,讓內科醫生可以不借助影像科,不用等待漫長的拍片時間,就可以迅速判斷患者病理風險,以及是否要進一步去影像科精確拍片診斷。

這樣買單的內科科室有動力,對于影像科既沒有革人家的命,也可以把一部分不需要拍片的患者工作量減輕。 

[[257940]]

▌第三投:優質的頭部客戶

這里的關鍵是:垂直領域應用場景往往是千差萬別的,AI投資看似是一個領域,實際上是一個橫跨幾乎所有社會生產生活領域的橫向投資。

投資人想成為每一個領域的專家,是非常不現實的,那樣判斷項目是否具有投資價值,很大程度就是看項目是否有足夠數量的頭部客戶,而且客戶簽單并不是簡單的小批量實驗性訂單,而是大批量生產型訂單。

例如車輛領域比較好是前裝市場訂單。如果頭部客戶肯海量下單,說明產品已經具備了很好的可靠性,項目也就具備充分的投資價值。

又例如現在很多AI項目聽起來應用領域很多,但是仔細一考量,會發現每個領域可能都是簽了一兩個小訂單,客戶只是出于各種原因,為了投石問路而提供了一些實驗性項目,這樣的訂單其實不見得一定能夠持續,需要對訂單服務內容和客戶反饋進行深入盡調分析,才能確定它能否在未來一年轉化為批量生產型訂單。

▌第四投:應用場景夠low

沒錯,你沒看錯,不是高大上,而是夠low。原因如下:

1、越low的地方,用重復人力勞動越多,解決的問題越簡單,越適合人工智能當下的能力。

如果高大上的地方,要么其實是需要真正的“智力如創造力、分析力等”,現在AI根本做不到,要么其實用不了幾個人,你用AI替代,也沒有多少效率提升。

例如游戲設計其實很low,全是拼人力,拼時間,現在用AI來做設計了,一下子三天干完過去一個團隊三十天的活兒,你說客戶會不會買單?一定買單。

其實這一輪AI投資的秘密,就是“降本增效”,low場景從100個人降到1個人,縮減的是巨大的成本,高大上場景從1個人降到0個人,縮減的成本可能還不如雇個人。

而且越low的場景,越在社會上廣泛存在,解決一個,就意味著全國乃至全世界有大量的類似場景,市場空間巨大無比。越高大上的場景個性化越強,很可能不適合作為產品。

其實理解了這個秘密,也就不難理解AI項目的技術替代性問題,其實只要你能用很低的成本,實現用1個人替換100個人,根本不用擔心未來有什么新技術去取代你,因為替換1個人到0個人的收效太小,就算對手的技術實力極強,他為什么要做這個事兒呢?

世界上還有無數值得去做的,需要替換100個人的場景沒有被挖掘。

2,越low越紅海的地方,一旦用了AI就是全新的藍海,而且別人還不一定進的來。

這里稍微再劇透一下我們的投資邏輯,其實我們投資的項目只有兩類:管理咨詢公司和小家電公司。

因為好投的AI項目要么是把AI用于B端客戶的節約成本,提高效率,這本身就是管理咨詢公司的活兒,只不過我們AI公司有了新的AI技術工具而已;

要么是把AI技術用于C端客戶的生活,比較好的載體就是小家電,可能看不起眼的傳統家電,比如一個掃地機器人,增加了AI以后,就脫胎換骨,外形看起來還是那個圓咚咚的老樣子,但是腦子可比以前好使多了,當采用了AI以后,硬件成本又會大幅度下降(因為可以用很便宜的通用傳感器加復雜的工程算法實現來解決過去很貴的專用傳感器搞不定的事兒)。

又便宜、又好用,一下子就把過去的紅海變成藍海了。

那些傳統掃地機的廠商,想一下子具備AI能力,其實很難的,因為船大難掉頭,也沒有這個基因;AI廠商要進來做掃地機也沒有那么容易,有先行專利壁壘,有工程化時間差。

因為AI的應用迭代不像互聯網那么快,你幾輪軟件硬件磨合下來,至少半年到一年吧,有這個時間,人家先行者又弄出新東西新功能了。

這還不是說有錢就能加速的事兒。

3,Low的場景,反而適合初創團隊,越高大上的場景,解決起來越不容易,越適合已經具備足夠規模的企業。

就像誰都知道,打鬼子有好武器,直接上正規軍非常好,但是問題是一窮二白沒有啊,正面戰場那就不如看起來很low的游擊戰。 

[[257941]]

▌第五投:強大的工程和服務能力

這個問題也是很多朋友經常會疑惑的,因為大多數人認為,投人工智能投的是技術,特別是算法的領先……

其實,目前這一輪AI熱潮的理論基礎在08年左右已經被學術界解決,可以認為是大樹枝干已成,各種算法無法都是些旁支或者葉子,并且學術上有優質論文支持的算法,在實際中未必有任何實用價值,因為學術論文的前提假設可以自己隨意設定,而實際完全不同,任何算法脫離了前提假設都沒有存在價值。

既然算法并不重要,也就是說目前的AI在實用階段其實沒有算法的本質區別,產品和產品的區別,主要就體現在工程化能力,也就是實際場景中,各種限制條件,把學術論文天馬行空的問題,變成了有大量明確前提的問題,這就是所謂工程化,既包括了算法的實際落地能力,也包括了項目團隊如何綜合運用各種軟硬件資源,搭建有效、可靠的產品。

這一點非常重要,因為產品不是學術研究,必須應對各種現實的不圓滿,這必須是創業團隊有多年的工程經驗(未必是AI工程經驗),因為只有這樣的團隊才會有足夠敏感度去預感產品中的坑,并且盡量規避,提高投資效率。

工程化能力,在互聯網項目里基本上不用特別考慮,不過也有例外,例如摩拜和小黃車的作戰,在我看來,小黃車的敗北除了創始團隊因素以外,更重要的就是工程化能力和經驗不足,摩拜很清晰地認識到了,共享單車作為一個物理設備,一旦投放市場后,其穩定性、可靠性非常重要,所以從智能鎖設計,到車體加固等都遠勝小黃車。

AI的運用,比共享單車要復雜更多倍,從軟件到硬件,從環境感知到行為決策,每一步都要考慮復雜的現實情況,軟硬件的魯棒性等等。

如果創業團隊沒有豐富的工程化能力和經驗,就會持續不斷掉到坑里。

而投資人如果沒有過工程化經驗,就很難設身處地去理解工程化的重要性,不過也不要緊,人不一定有自身體驗才能行動,只要認識到工程化之重要即可。

服務能力也是一樣,ToB項目一半是產品,一半是服務,往往一個AI項目在其發展的不同階段是不同的,借用好友AI圈知名創業者和思想家鮑捷博士的比喻,AI項目就像毛毛蟲,小時候的商業模式是吃葉子,長大變成蝴蝶的商業模式是吸花蜜,雖然蝴蝶很美,但是要求毛毛蟲去吃花蜜是不可能的。

好的AI項目是不斷在不同商業模式的外在形態間躍遷的,躍遷的基礎就是服務能力,因為只有有很好的服務能力,才能非常好的不斷抓住客戶和潛在客戶新的需求,往往上一代產品就是下一代產品的需求來源和敲門磚。 

6

服務能力和工程化能力一樣,是創業團隊要在之前的人生旅程中實踐獲得的。

我發現一個很有意思的現象,做得好的AI團隊,除了要具備AI技術大牛以外,很大概率上都有一個甚至多個來自通信行業的創始合伙人。

我認為原因主要是這兩個行業具備高度的相似性和人才通用性,

  • 一是都是基于計算機科學和電子科學的;
  • 第二是都是服務B端,而且是大B;
  • 第三是因為通信行業發展日趨穩定,有能力的很多人士都紛紛尋找新的機會,這就形成了從通信業到AI業的躍遷,前面又說過,AI行業躍遷能力非常重要,能夠從通信行業跨界躍遷過來,在AI行業內部躍遷自然不在話下,而之前的軟硬件集成、運用能力和大客戶服務能力又可以完整轉移。

所以,如果您面對的AI項目里有一個靠譜的通信行業創始人,請重點考慮一下。

(以下內容感謝網友Kevin貢獻思路和大部分內容)

服務能力重要的另外一個原因,其實是“Customer Engagement”(請原諒我用在老東家喜愛的英語詞匯,因為這個詞確實很貼切)。

首先,B/G客戶對他們自己業務最熟悉,但不是很清楚新技術與新理念能如何在“合規”的情況下帶來新的管理價值或成本優勢,以及如何合理落地。

(實際上,對于沒有AI概念的客戶,完全想象不到AI可以給他們做什么,過去有句話叫貧窮限制了想象力,其實這個貧窮不局限于財富,也包括知識)

AI團隊熟悉技術細節,也會有一些“優秀實踐”或者“他山之玉”,但是很多沒有傳統行業基因的AI團隊,其實不好抓住關鍵點,也就是:要比客戶自己更熟知,并理解目標客戶的管理現狀,問題,以及問題產生的原因(內部政治因素?技術?亦或者是不知道已經有先進方案)。

并能結合具體客戶具體問題具體落地場景,針對性極強的給客戶給出完整的交鑰匙級別的解決方案。(怎么聽起來越來越像通信行業)而不是一個PPT一講一年,不管受眾關切,不傾聽真實需求,好像就是說:我技術很牛B,我也有某某案例,你們看著辦吧,看我能干嘛,我就給你干。(哎呀,這個風格太像外企啦)

尤其是當這種新技術的導入涉及到管理變革或流程優化這類接近于BPR的操作,才能更大限度發揮出新技術價值的時候,就需要有足夠藝術性,把對脈,條理清晰,邏輯嚴謹且有足夠高度性與概括性并能說清楚應用價值的方案與客戶打動能力。

好的解決方案能力與演講能力有助于拿下項目或者抓住客戶的一個小需求切入,給客戶傳遞足夠的信心與預期,接下來再以彪悍的工程服務和交付能力實現AI價值落地與“兌現那些吹過的。

 

責任編輯:未麗燕 來源: 知乎
相關推薦

2022-07-26 11:27:40

人工智能AIOps

2022-02-14 07:35:28

人工智能項目模型

2022-06-20 15:45:02

人工智能智能安防智慧安防

2019-03-21 15:15:38

人工智能項目開發

2024-11-19 15:22:37

2022-06-10 10:33:18

人工智能機器學習機器學習模型的關鍵

2022-07-28 16:46:54

人工智能安防

2020-09-07 11:28:09

人工智能機器學習AI

2024-03-12 10:32:08

2022-03-23 14:05:40

人工智能企業選型指南

2023-02-07 07:16:54

人工智能機器學習方法

2020-03-12 13:43:41

人工智能AI疫情防控

2022-10-19 07:04:12

?人工智能云服務Alaas

2022-06-20 11:05:58

通用人工智能機器人

2022-07-12 22:10:34

人工智能AI

2019-01-18 12:24:22

人工智能資本融資

2020-09-23 10:21:32

人工智能

2023-12-25 22:27:38

2021-11-05 09:56:36

人工智能AI指數

2018-08-17 15:17:56

人工智能層次極端
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 欧美做暖暖视频 | 精品美女在线观看视频在线观看 | 精品一区二区三区在线播放 | 青青草国产在线观看 | 精产国产伦理一二三区 | 欧美精品一区二区三区在线四季 | 欧美一级免费 | 69福利影院 | 51ⅴ精品国产91久久久久久 | 91国产视频在线 | 久草免费在线视频 | 97精品国产97久久久久久免费 | 久久国产日韩 | 亚洲视频一区在线观看 | 欧美日韩免费在线 | 久久99精品久久久久久国产越南 | 亚洲欧美中文日韩在线v日本 | 久久99视频免费观看 | 亚洲网址在线观看 | 草在线| 亚洲国产精品一区二区久久 | 成人性生交大片免费看中文带字幕 | 不卡欧美 | 欧洲精品码一区二区三区免费看 | 久久综合一区 | 日本在线黄色 | 成人免费观看男女羞羞视频 | 欧美日韩亚洲国产 | 97影院2| 狠狠草视频 | 久久99精品久久久久久国产越南 | 免费欧美| 中文字幕在线观 | 国产精品久久久久久福利一牛影视 | 麻豆毛片 | 影音先锋中文字幕在线观看 | 日韩精品视频在线免费观看 | 亚洲毛片在线观看 | 日韩中文字幕在线观看 | 国产精品一区二区三区在线 | 久久亚洲一区二区三 |