成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

我們一起聊聊基于布谷鳥搜索優(yōu)化的多階段胎兒心電信號(hào)增強(qiáng)提取算法(MATLAB)

發(fā)布于 2025-7-1 06:35
瀏覽
0收藏

完整算法流程圖

我們一起聊聊基于布谷鳥搜索優(yōu)化的多階段胎兒心電信號(hào)增強(qiáng)提取算法(MATLAB)-AI.x社區(qū)圖片

詳細(xì)算法流程步驟

數(shù)據(jù)加載與預(yù)處理

讀取EDF格式的多通道胎兒ECG數(shù)據(jù)(直接胎兒心電+4個(gè)腹部導(dǎo)聯(lián))

應(yīng)用50Hz陷波濾波器消除工頻干擾

1-100Hz帶通濾波去除基線漂移和高頻噪聲

布谷鳥搜索優(yōu)化初始化

設(shè)置鳥巢數(shù)量(25)、最大迭代次數(shù)(25)、棄巢概率(0.25)

定義搜索空間:濾波器階數(shù)(80-300)、學(xué)習(xí)率(0.01-0.99)

使用Lévy飛行分布生成初始解

適應(yīng)度評估

對每個(gè)參數(shù)組合運(yùn)行NLMS自適應(yīng)濾波

小波提取胎兒ECG成分

計(jì)算基于小波的SNR:fitness = 0.9×SNR - 0.1×(階數(shù)/最大階數(shù))

萊維飛行更新

按Lévy飛行模式生成新解

邊界約束確保參數(shù)有效性

貪婪選擇保留更優(yōu)解

劣解替換

淘汰適應(yīng)度最差的25%解

隨機(jī)生成新解或基于當(dāng)前最優(yōu)解擾動(dòng)生成

最優(yōu)參數(shù)應(yīng)用

全數(shù)據(jù)應(yīng)用優(yōu)化后的NLMS濾波器

執(zhí)行多階段胎兒ECG提取: a. 小波去噪 b. 1-35Hz胎兒心電帶通濾波 c. 非線性能量算子增強(qiáng)QRS波 d. 移動(dòng)平均平滑

性能評估

計(jì)算小波域SNR

對比基線參數(shù)性能

可視化三階段信號(hào)對比

算法應(yīng)用領(lǐng)域

應(yīng)用領(lǐng)域

具體場景

圍產(chǎn)期監(jiān)護(hù)

非侵入式胎兒心臟功能實(shí)時(shí)監(jiān)測

胎兒心律失常診斷

早產(chǎn)兒心動(dòng)過速/心動(dòng)過緩早期預(yù)警

多胎妊娠監(jiān)護(hù)

分離多個(gè)胎兒心電信號(hào)

產(chǎn)前藥物評估

監(jiān)測藥物對胎兒心臟活動(dòng)的影響

胎兒缺氧檢測

心電變異分析預(yù)測宮內(nèi)窘迫

生物醫(yī)學(xué)研究

胎兒自主神經(jīng)系統(tǒng)發(fā)育研究

移動(dòng)健康設(shè)備

便攜式胎兒監(jiān)護(hù)儀信號(hào)處理核心

信號(hào)分析應(yīng)用流程

處理階段

技術(shù)實(shí)現(xiàn)

創(chuàng)新優(yōu)勢

多源數(shù)據(jù)融合

聯(lián)合直接胎兒ECG+4個(gè)腹部導(dǎo)聯(lián)構(gòu)建參考系統(tǒng)

利用空間信息增強(qiáng)信號(hào)分離能力

動(dòng)態(tài)噪聲抑制

自適應(yīng)陷波+帶通濾波組合

針對性消除50Hz工頻干擾和肌電噪聲

元啟發(fā)式優(yōu)化

布谷鳥搜索全局優(yōu)化NLMS參數(shù)

避免局部最優(yōu),平衡收斂速度與精度

混合適應(yīng)度函數(shù)

SNR(90%) + 復(fù)雜度(10%)加權(quán)評估

確保臨床可用性與實(shí)時(shí)性平衡

多尺度特征提取

5層db4小波分解+系數(shù)閾值處理

分離母親心電與胎兒心電頻帶特征

非線性能量增強(qiáng)

Teager能量算子:ψ[n]=x2[n]-x[n-1]x[n+1]

突出胎兒QRS波群,抑制P/T波干擾

智能后處理

自適應(yīng)窗長平滑(25ms) + 振幅歸一化

保持波形形態(tài)的同時(shí)減少偽跡

抗噪評估

小波域相關(guān)系數(shù)SNR:20log???ρ?/√(1-ρ2)

克服傳統(tǒng)時(shí)域SNR對幅度敏感缺陷

與深度學(xué)習(xí)結(jié)合方式

融合方向

技術(shù)方案

預(yù)期效益

智能參數(shù)預(yù)測

LSTM學(xué)習(xí)最優(yōu)濾波器參數(shù)映射關(guān)系,替代布谷鳥搜索

計(jì)算效率提升10倍,適合實(shí)時(shí)監(jiān)護(hù)

端到端提取

1D-CNN直接處理原始腹部信號(hào)→胎兒ECG輸出

避免傳統(tǒng)信號(hào)處理級(jí)聯(lián)誤差累積

生成對抗增強(qiáng)

GAN合成帶噪聲的胎兒心電數(shù)據(jù),擴(kuò)充訓(xùn)練樣本

解決臨床標(biāo)注數(shù)據(jù)稀缺問題

多任務(wù)學(xué)習(xí)

聯(lián)合訓(xùn)練:胎兒ECG提取 + QRS檢測 + 心律失常分類

構(gòu)建一體化胎兒心臟評估系統(tǒng)

注意力機(jī)制

Transformer聚焦胎兒QRS關(guān)鍵時(shí)段,抑制母親心電干擾

提升復(fù)雜噪聲環(huán)境下的魯棒性

遷移學(xué)習(xí)

成人ECG預(yù)訓(xùn)練模型微調(diào)適應(yīng)胎兒心電特征

解決胎兒數(shù)據(jù)不足問題

可解釋性分析

梯度類激活圖(Grad-CAM)可視化網(wǎng)絡(luò)關(guān)注區(qū)域

滿足臨床診斷的可解釋性需求

邊緣計(jì)算部署

知識(shí)蒸餾壓縮模型,適配嵌入式胎兒監(jiān)護(hù)設(shè)備

實(shí)現(xiàn)院外實(shí)時(shí)監(jiān)護(hù)

clear 
close all


% Load data
edfFile = 'r10.edf';
info = edfinfo(edfFile);
data1 = edfread(edfFile, 'SelectedSignals', 'Direct_1');
d = cell2mat(table2cell(data1));
data2 = edfread(edfFile, 'SelectedSignals', 'Abdomen_1');
B2 = cell2mat(table2cell(data2));
data3 = edfread(edfFile, 'SelectedSignals', 'Abdomen_2');
B3 = cell2mat(table2cell(data3));
data4 = edfread(edfFile, 'SelectedSignals', 'Abdomen_3');
B4 = cell2mat(table2cell(data4));
data5 = edfread(edfFile, 'SelectedSignals', 'Abdomen_4');
B5 = cell2mat(table2cell(data5));


% Setup parameters
Fs = 1000;
Ts = 1/Fs;
Tm = (0:length(d)-1) / Fs;


% First-stage signal pre-processing for noise reduction
% Apply bandpass filter to eliminate baseline wander and high-frequency noise
b_notch = designfilt('bandstopiir', 'FilterOrder', 2, ...
                  'HalfPowerFrequency1', 48, 'HalfPowerFrequency2', 52, ...
                  'DesignMethod', 'butter', 'SampleRate', Fs);


b_bp = designfilt('bandpassiir', 'FilterOrder', 4, ...
                'HalfPowerFrequency1', 1, 'HalfPowerFrequency2', 100, ...
                'DesignMethod', 'butter', 'SampleRate', Fs);


% Apply filters to abdominal signals
B2_filtered = filtfilt(b_notch, B2);
B2_filtered = filtfilt(b_bp, B2_filtered);
B3_filtered = filtfilt(b_notch, B3);
B3_filtered = filtfilt(b_bp, B3_filtered);
B4_filtered = filtfilt(b_notch, B4);
B4_filtered = filtfilt(b_bp, B4_filtered);
B5_filtered = filtfilt(b_notch, B5);
B5_filtered = filtfilt(b_bp, B5_filtered);


% Apply filters to direct signal (reference)
d_filtered = filtfilt(b_notch, d);
d_filtered = filtfilt(b_bp, d_filtered);


% Differential approach using multiple abdominal channels
% Creates a better reference signal for extracting fetal ECG
noisy_sig = B2_filtered;


% Setup Cuckoo Search Algorithm for optimizing LMS parameters
% Cuckoo Search parameters
n_nests = 25;           % Number of nests (population size)
max_iterations = 25;    % Maximum number of iterations
pa = 0.25;              % Probability of abandoning worse nests


% Search space boundaries
min_order = 80;         % Minimum filter order
max_order = 300;        % Maximum filter order (reduced for efficiency)
min_mu = 0.01;          % Min learning rate
max_mu = 0.99;          % Max learning rate


% Initialize nests [order, step_size]
nests = zeros(n_nests, 2);
fitness = zeros(n_nests, 1);


% Generate initial nests with Lévy flight distribution
for i = 1:n_nests
    nests(i, :) = [randi([min_order, max_order]), rand * (max_mu - min_mu) + min_mu];
end


% Select shorter segment for optimization to speed up process
start_time = 0;
end_time = 10; 
start_idx = find(Tm >= start_time, 1);
end_idx = find(Tm >= end_time, 1);
d_opt = d_filtered(start_idx:end_idx);
noisy_opt = noisy_sig(start_idx:end_idx);


% Track best solution
best_fitness = -inf;
best_solution = [0, 0];
fitness_history = zeros(max_iterations, 1);


% Define Lévy flight function
function s = levy_flight(beta)
    % Mantegna's algorithm for Lévy flights
    sigma_u = (gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
    u = randn(1) * sigma_u;
    v = randn(1);
    s = u/abs(v)^(1/beta);
end


% Cuckoo Search main loop
for iter = 1:max_iterations
    % Evaluate fitness for each nest
    for i = 1:n_nests
        order = round(nests(i, 1));
        mu = nests(i, 2);


        % Run LMS filter with these parameters
        lms = dsp.LMSFilter(order + 1, 'StepSize', mu, 'Method', 'Normalized LMS', 'WeightsOutputPort', true);
        [y, e, w] = step(lms, noisy_opt, d_opt);


        % Use wavelet-based SNR computation to better evaluate signal quality
        [~, fetal_signal] = extract_fetal_wavelet(e);
        curr_snr = wSNR(d_opt, fetal_signal);


        % Balance SNR with computational complexity
        % Higher weight on SNR (0.9) vs order reduction (0.1)
        fitness(i) = 0.9 * curr_snr - 0.1 * (order / max_order);
    end


    % Find current best nest
    [current_best_fitness, best_idx] = max(fitness);


    % Update best solution if improved
    if current_best_fitness > best_fitness
        best_fitness = current_best_fitness;
        best_solution = nests(best_idx, :);
    end


    % Keep track of progress
    fitness_history(iter) = best_fitness;
    fprintf('Iteration %d: Best Order = %d, Step Size = %.4f, Fitness = %.4f\n', ...
        iter, round(best_solution(1)), best_solution(2), best_fitness);


    % Get a new cuckoo by Lévy flight
    for i = 1:n_nests
        % Generate step size using Lévy flight
        beta = 1.5;  % Parameter for Lévy distribution (typically between 1 and 2)
        step_size_order = levy_flight(beta) * 20;  % Scale for order parameter
        step_size_mu = levy_flight(beta) * 0.1;    % Scale for step size parameter


        % Select a random nest
        j = randi(n_nests);


        % Generate new nest using Lévy flight
        new_order = round(nests(i, 1) + step_size_order * (nests(i, 1) - nests(j, 1)));
        new_mu = nests(i, 2) + step_size_mu * (nests(i, 2) - nests(j, 2));


        % Ensure bounds
        new_order = max(min_order, min(max_order, new_order));
        new_mu = max(min_mu, min(max_mu, new_mu));


        % Evaluate new solution
        lms = dsp.LMSFilter(new_order + 1, 'StepSize', new_mu, 'Method', 'Normalized LMS', 'WeightsOutputPort', true);
        [y, e, w] = step(lms, noisy_opt, d_opt);
        [~, fetal_signal] = extract_fetal_wavelet(e);
        new_snr = wSNR(d_opt, fetal_signal);
        new_fitness = 0.9 * new_snr - 0.1 * (new_order / max_order);


        % Replace if better
        if new_fitness > fitness(i)
            nests(i, :) = [new_order, new_mu];
            fitness(i) = new_fitness;
        end
    end


    % Abandon worst nests and build new ones
    [sorted_fitness, idx] = sort(fitness, 'descend');
    for i = floor(n_nests * (1-pa))+1:n_nests
        % Replace worst nests with new random solutions
        % But biased towards the best solution (exploitation)
        if rand < 0.5
            % Generate completely new nest
            nests(idx(i), :) = [randi([min_order, max_order]), rand * (max_mu - min_mu) + min_mu];
        else
            % Generate solution biased towards best solution
            alpha = 0.3 * rand;  % Small random factor
            nests(idx(i), :) = best_solution + alpha * (rand(1, 2) .* 2 - 1) .* [30, 0.1];


            % Ensure bounds
            nests(idx(i), 1) = max(min_order, min(max_order, round(nests(idx(i), 1))));
            nests(idx(i), 2) = max(min_mu, min(max_mu, nests(idx(i), 2)));
        end
    end
end


% Apply optimal parameters to full dataset
optimal_order = round(best_solution(1));
optimal_mu = best_solution(2);
fprintf('\nOptimal Filter Order: %d\n', optimal_order);
fprintf('Optimal Step Size: %.4f\n', optimal_mu);


% Process full signal with optimized parameters
lms_optimal = dsp.LMSFilter(optimal_order + 1, 'StepSize', optimal_mu, 'Method', 'Normalized LMS', 'WeightsOutputPort', true);
[y_optimal, e_optimal, w_optimal] = step(lms_optimal, noisy_sig, d_filtered);


% Apply advanced post-processing for better signal quality
[fECG_filtered_optimal, fetal_ecg_final] = advanced_fecg_extraction(e_optimal, Fs);


% Calculate SNR with optimized parameters
Tm_full = (0:length(y_optimal)-1) / Fs;
start_time = 0;
end_time = 30;
start_idx = find(Tm_full >= start_time, 1);
end_idx = find(Tm_full >= end_time, 1);
selected_signal_opt = y_optimal(start_idx:end_idx);
selected_original = noisy_sig(start_idx:end_idx);
selected_tm = Tm_full(start_idx:end_idx);
selected_fecg = fetal_ecg_final(start_idx:end_idx);


% Calculate SNR using wavelet-based method
SNR_optimal = wSNR(d_filtered(start_idx:end_idx), selected_fecg);
fprintf('SNR with Optimized Parameters: %.4f\n', SNR_optimal);


% Compare with a baseline LMS filter (fixed parameters)
baseline_order = 200;
baseline_mu = 0.2;
lms_baseline = dsp.LMSFilter(baseline_order + 1, 'StepSize', baseline_mu, 'Method', 'Normalized LMS', 'WeightsOutputPort', true);
[y_baseline, e_baseline, w_baseline] = step(lms_baseline, noisy_sig, d_filtered);
[~, fetal_ecg_baseline] = advanced_fecg_extraction(e_baseline, Fs);
SNR_baseline = wSNR(d_filtered(start_idx:end_idx), fetal_ecg_baseline(start_idx:end_idx));
fprintf('SNR with Baseline Parameters: %.4f\n', SNR_baseline);
fprintf('Improvement: %.4f dB\n', SNR_optimal - SNR_baseline);


% Plot results
figure;
subplot(3,1,1);
plot(selected_tm, selected_original);
title('Original Abdominal ECG Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-250 400]);
xlim([0 6]);


subplot(3,1,2);
plot(selected_tm, -e_optimal(start_idx:end_idx));
title(['After LMS Filtering (Order: ' num2str(optimal_order) ', μ: ' num2str(optimal_mu, '%.4f') ')']);
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-250 400]);
xlim([0 6]);


subplot(3,1,3);
plot(selected_tm, selected_fecg);
title(['Final Fetal ECG Signal (SNR: ' num2str(SNR_optimal, '%.2f') ' dB)']);
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-250 400]);
xlim([0 6]);




% Required helper functions
function [denoised_signal, fetal_signal] = extract_fetal_wavelet(signal)
    % Wavelet-based extraction of fetal ECG
    % Decompose signal using wavelet transform
    [c, l] = wavedec(signal, 5, 'db4');


    % Threshold coefficients to remove noise
    thr = median(abs(c))/0.6745 * sqrt(2*log(length(signal)));
    c_t = wthresh(c, 's', thr/2.5);  % Soft thresholding with reduced threshold for better fetal preservation


    % Reconstruct signal
    denoised_signal = waverec(c_t, l, 'db4');


    % Extract fetal components (detail coefficients in certain bands)
    d3 = wrcoef('d', c_t, l, 'db4', 3);
    d4 = wrcoef('d', c_t, l, 'db4', 4);
    d5 = wrcoef('d', c_t, l, 'db4', 5);


    % Combine relevant detail coefficients for fetal signal
    fetal_signal = d3 + d4 + d5;
end


function snr_val = wSNR(reference, extracted)
    % Wavelet-based SNR calculation for better evaluation of fetal ECG
    % Apply wavelet denoising to both signals
    [~, ref_fetal] = extract_fetal_wavelet(reference);
    [~, ext_fetal] = extract_fetal_wavelet(extracted);


    % Normalize both signals
    ref_fetal = ref_fetal / std(ref_fetal);
    ext_fetal = ext_fetal / std(ext_fetal);


    % Calculate correlation-based SNR
    r = corrcoef(ref_fetal, ext_fetal);
    correlation = r(1,2);
    snr_val = 20 * log10(abs(correlation) / sqrt(1 - correlation^2));


    % Ensure reasonable SNR range
    snr_val = max(0, min(snr_val, 30));  % Cap between 0-30 dB
end


function [denoised_signal, enhanced_fetal] = advanced_fecg_extraction(signal, fs)
    % Multi-stage fetal ECG extraction


    % Stage 1: Wavelet denoising
    [denoised_signal, fetal_wavelet] = extract_fetal_wavelet(signal);


    % Stage 2: Bandpass filtering to isolate fetal frequency range (typically 1-35 Hz)
    bp_fetal = designfilt('bandpassiir', 'FilterOrder', 4, ...
                'HalfPowerFrequency1', 1, 'HalfPowerFrequency2', 35, ...
                'DesignMethod', 'butter', 'SampleRate', fs);
    fetal_filtered = filtfilt(bp_fetal, denoised_signal);


    % Stage 3: Non-linear energy operator to enhance QRS complexes
    y = fetal_filtered;
    psi = y(2:end-1).^2 - y(1:end-2).*y(3:end);
    psi = [0; psi; 0];  % Pad to maintain original length


    % Stage 4: Moving average smoothing
    window_size = round(fs * 0.025);  % 25ms window
    smoothed = movmean(psi, window_size);


    % Stage 5: Combine enhanced signal with wavelet output
    enhanced_fetal = fetal_wavelet + 0.6 * smoothed;


    % Normalize output
    enhanced_fetal = enhanced_fetal / max(abs(enhanced_fetal)) * max(abs(fetal_wavelet));
end

本文轉(zhuǎn)載自?????高斯的手稿??

收藏
回復(fù)
舉報(bào)
回復(fù)
相關(guān)推薦
主站蜘蛛池模板: 九九久久久 | h网站在线观看 | 成人性视频免费网站 | 精品久久精品 | 精品国产欧美一区二区 | 999免费观看视频 | 黄色一级在线播放 | 国产色婷婷精品综合在线手机播放 | 中文在线播放 | 成人av网站在线观看 | 在线亚洲免费 | 懂色av色香蕉一区二区蜜桃 | 精品日韩一区二区 | 亚洲va欧美va人人爽午夜 | 一区二区在线不卡 | 亚洲一区免费视频 | 成人伊人| 午夜成人免费视频 | 男人天堂色 | 狠狠av| 国产精品久久久av | 五月天国产在线 | 久久国 | 激情av免费看 | 国产精品久久久久久久久久久久久久 | 国产色网 | 国产91综合一区在线观看 | 欧美激情精品久久久久久免费 | 精品视频一区二区三区 | 在线观看视频一区二区三区 | 日本爱爱视频 | 国产精品成人一区 | 一级毛片视频在线 | 国产区高清 | 久久国产免费看 | 色爱综合网 | 日韩av成人在线 | 99久久婷婷国产综合精品首页 | 精品欧美一区二区三区久久久 | 婷婷国产一区二区三区 | 成人高清视频在线观看 |