成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

機器學習 | 從0開發大模型之模型預訓練

人工智能 機器學習
在訓練過程中,通常會使用 scaler.scale(loss).backward() 來計算縮放后的損失的梯度,然后使用 scaler.step(optimizer) 來更新模型參數,最后使用 scaler.update() 來更新縮放因子,這樣可以確保訓練過程的穩定性和效率。

1、參數初始化

初始化參數模板:

from transformers import PretrainedConfig

class MyPretrainConfig(PretrainedConfig):
    model_type = "myllm"

    def __init__(
            self,
            dim: int = 512,
            n_layers: int = 8,
            n_heads: int = 16,
            n_kv_heads: int = 8,
            vocab_size: int = 6400,
            hidden_dim: int = None,
            multiple_of: int = 64,
            norm_eps: float = 1e-5,
            max_seq_len: int = 512,
            dropout: float = 0.0,
            flash_attn: bool = True,
            use_moe: bool = False,
            num_experts_per_tok=2,
            n_routed_experts=4,
            n_shared_experts: bool = True,
            scoring_func='softmax',
            aux_loss_alpha=0.01,
            seq_aux=True,
            norm_topk_prob=True,
            **kwargs,
    ):
        self.dim = dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.vocab_size = vocab_size
        self.hidden_dim = hidden_dim
        self.multiple_of = multiple_of
        self.norm_eps = norm_eps
        self.max_seq_len = max_seq_len
        self.dropout = dropout
        self.flash_attn = flash_attn
        self.num_experts_per_tok = num_experts_per_tok  # 每個token選擇的專家數量
        self.n_routed_experts = n_routed_experts        # 總的專家數量
        self.n_shared_experts = n_shared_experts        # 共享專家
        self.scoring_func = scoring_func                # 評分函數,默認為'softmax'
        self.aux_loss_alpha = aux_loss_alpha            # 輔助損失的alpha參數
        self.seq_aux = seq_aux                          # 是否在序列級別上計算輔助損失
        self.norm_topk_prob = norm_topk_prob            # 是否標準化top-k概率
        super().__init__(**kwargs)

這里依賴 transformers 庫的 PretrainedConfig,其中 MyPretrainConfig 參數如下:

  • dim: int = 512:模型的維度,默認為 512
  • n_layers: int = 8:模型的層數,默認為 8
  • n_heads: int = 16:注意力頭的數量,默認為 16
  • n_kv_heads: int = 8:鍵值對的頭數,默認為 8
  • vocab_size: int = 6400:詞匯表的大小,默認為 6400
  • hidden_dim: int = None:隱藏層的維度,默認為 None,可以根據需要設置
  • multiple_of: int = 64:模型維度必須是這個值的倍數,默認為 64
  • norm_eps: float = 1e-5:歸一化的 epsilon 值,默認為 1e-5
  • max_seq_len: int = 512:最大序列長度,默認為 512
  • dropout: float = 0.0:dropout 概率,默認為 0.0
  • flash_attn: bool = True:是否使用快速注意力機制,默認為 True
  • num_experts_per_tok=2:每個 token 選擇的專家數量,默認為 2
  • n_routed_experts=4:總的專家數量,默認為 4
  • n_shared_experts: bool = True:是否使用共享專家,默認為 True
  • scoring_func='softmax':評分函數,默認為 'softmax'
  • aux_loss_alpha=0.01:輔助損失的 alpha 參數,默認為 0.01
  • seq_aux=True:是否在序列級別上計算輔助損失,默認為 True
  • norm_topk_prob=True:是否標準化 top-k 概率,默認為 True
  • **kwargs:接收其他關鍵字參數,傳遞給父類的構造函數

PretrainedConfig 提供預訓練的參數模板,由于每個模型都是不一樣的,所以一般做成配置文件攜帶模型一起發布。

2、加載預處理的數據

加載上一篇文章已經處理好的預處理數據,代碼如下:

data_path_list = [f'./pretrain_data.bin']
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
train_sampler = None
num_workers = 16  # 可以根據系統的 CPU 核心數來調整
train_loader = DataLoader(
    train_ds,
    batch_size=batch_size,
    pin_memory=True,
    drop_last=False,
    shuffle=False,
    num_workers=num_workers,
    sampler=train_sampler
)

其中 PretrainDataset 是加載代碼,主要目的是將數據轉換到內存中,方便 DataLoader 獲取:

class PretrainDataset(Dataset):
    def __init__(self, data_path_lst, max_length=512, memmap=False):
        super().__init__()
        if memmap:
            with open(data_path_lst[0], 'r') as f:
                nbytes = f.seek(0, 2)
                flen = f.tell() // np.dtype('uint16').itemsize
            self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length))
        else:
            data_lst = []
            for data_path in data_path_lst:
                with open(data_path, 'rb') as f:
                    data = np.fromfile(f, dtype=np.uint16)
                    data_lst.append(data)
            data = np.concatenate(data_lst)
            data = data[:max_length * int(len(data) / max_length)]
            self.data = data.reshape(-1, max_length)
        print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
        print("downloading finished.....")

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index: int):
        sample = self.data[index]
        X = np.array(sample[:-1]).astype(np.int64)
        Y = np.array(sample[1:]).astype(np.int64)

        return torch.from_numpy(X), torch.from_numpy(Y)

其中 Datasetfrom torch.utils.data import Dataset 通用代碼。

3、初始化模型

初始化模型,借鑒 llama2.c 的代碼,路徑:https://github.com/karpathy/llama2.c/blob/master/model.py,使用 Transformerdecoder 階段,即 Decoder-Only,主要是如下邏輯:

  • 初始化:創建tok_embeddings,dropout,layers和CausalLMOutputWithPast等
  • forward:獲取迭代輸出的結果

具體代碼如下:

class Transformer(PreTrainedModel):
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: MyPretrainConfig):
        super().__init__(params)
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(params.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)

        # share the unembedding parameters with the embedding parameters
        self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying

        # some useful precompute for the RoPE relative positional embeddings
        freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))

        # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        freqs_cos = self.freqs_cos[:seqlen]
        freqs_sin = self.freqs_sin[:seqlen]

        for layer in self.layers:
            h = layer(h, freqs_cos, freqs_sin)
        h = self.norm(h)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the output on the very last position
            logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
            self.last_loss = None

        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)
        return self.OUT
...

然后通過上述模型初始化,并打印模型:

def init_model():
    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    model = Transformer(lm_config).to(device)
    print(f'LLM總參數量:{count_parameters(model) / 1e6:.3f} 百萬')
    return model

model = init_model()
print(model)

獲取輸出結果如下:

Transformer(
  (tok_embeddings): Embedding(6400, 512)
  (dropout): Dropout(p=0.0, inplace=False)
  (layers): ModuleList(
    (0-7): 8 x TransformerBlock(
      (attention): Attention(
        (wq): Linear(in_features=512, out_features=512, bias=False)
        (wk): Linear(in_features=512, out_features=256, bias=False)
        (wv): Linear(in_features=512, out_features=256, bias=False)
        (wo): Linear(in_features=512, out_features=512, bias=False)
        (attn_dropout): Dropout(p=0.0, inplace=False)
        (resid_dropout): Dropout(p=0.0, inplace=False)
      )
      (feed_forward): FeedForward(
        (w1): Linear(in_features=512, out_features=1408, bias=False)
        (w2): Linear(in_features=1408, out_features=512, bias=False)
        (w3): Linear(in_features=512, out_features=1408, bias=False)
        (dropout): Dropout(p=0.0, inplace=False)
      )
      (attention_norm): RMSNorm()
      (ffn_norm): RMSNorm()
    )
  )
  (norm): RMSNorm()
  (output): Linear(in_features=512, out_features=6400, bias=False)
)

模型初始化這里就不詳細說了,這個系列出一篇文章具體分析 llama2.c 源碼,講述是如何實現模型創建的。

4、選擇optimizer

執行模型初始化后則選擇優化器,這里代碼如下:

scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

4.1 GradScaler

GradScaler 在 PyTorch 中的作用是用于自動混合精度(Automatic Mixed Precision, AMP)訓練時的梯度縮放,具體來說,它的主要功能包括:

  • 防止梯度下溢:在使用混合精度訓練時,模型的權重和激活值可能會使用較低的精度(如半精度浮點數,FP16)。這可能導致在反向傳播過程中計算出的梯度值過小,從而出現梯度下溢(即梯度變為零),GradScaler 會自動調整梯度的縮放因子,以確保梯度在更新時不會下溢;
  • 提高訓練速度:使用混合精度可以減少內存使用和計算時間,從而加速訓練過程,GradScaler 通過動態調整縮放因子,幫助在保持數值穩定性的同時,充分利用混合精度的優勢;
  • 簡化代碼:使用 GradScaler 可以簡化混合精度訓練的實現,開發者不需要手動管理縮放因子和反縮放操作;

在訓練過程中,通常會使用 scaler.scale(loss).backward() 來計算縮放后的損失的梯度,然后使用 scaler.step(optimizer) 來更新模型參數,最后使用 scaler.update() 來更新縮放因子,這樣可以確保訓練過程的穩定性和效率。

4.2 optimizer

optimizer 在深度學習中是一個非常重要的組件,其主要作用是更新模型的參數,以最小化損失函數,具體來說,optimizer 的作用包括:

  • 參數更新:優化器根據計算得到的梯度信息來更新模型的參數(權重和偏置),通過調整這些參數,優化器試圖使模型在訓練數據上的表現更好;
  • 控制學習率:優化器通常會使用學習率(learning rate)來控制每次參數更新的幅度。學習率是一個超參數,決定了模型在每次迭代中向最優解移動的步長;
  • 實現不同的優化算法:PyTorch 提供了多種優化算法(如 SGD、Adam、RMSprop 等),每種算法都有其獨特的更新規則和策略。選擇合適的優化器可以影響模型的收斂速度和最終性能;
  • 處理動量和自適應學習率:一些優化器(如 Adam 和 RMSprop)使用動量和自適應學習率的策略來加速收斂和提高穩定性。這些策略可以幫助優化器在訓練過程中更有效地探索參數空間;
  • 支持正則化:某些優化器可以集成正則化技術(如 L2 正則化),以防止模型過擬合;

在下面的迭代訓練中,主要作用是根據損失值調整優化器參數:

# 反向傳播
scaler.scale(loss).backward()

# 梯度剪裁和更新參數
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()

# 清零梯度
optimizer.zero_grad(set_to_none=True)

5、迭代訓練

上述預處理數據加載完,模型執行了初始化,然后優化器也初始化后,就可以進行迭代訓練了,不過迭代訓練最重要的是設置學習率,根據loss動態調整參數,代碼如下:

for epoch in range(epochs):
    start_time = time.time()

    for step, (X, Y) in enumerate(train_loader):
        X = X.to(device)
        Y = Y.to(device)

        # 設置學習率
        lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

        # 前向傳播和損失計算
        with ctx:
            out = model(X, Y)
            loss = out.last_loss

        # 反向傳播
        scaler.scale(loss).backward()

        # 梯度剪裁和更新參數
        if (step + 1) % accumulation_steps == 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            scaler.step(optimizer)
            scaler.update()

        # 清零梯度
        optimizer.zero_grad(set_to_none=True)

        if step % 100 == 0:
            spend_time = time.time() - start_time
            print(
                'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
                    epoch,
                    epochs,
                    step,
                    iter_per_epoch,
                    loss.item(),
                    optimizer.param_groups[-1]['lr'],
                    spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
            model.eval()
            ckp = f'{save_dir}/pretrain_{lm_config.dim}.pth'
            state_dict = model.state_dict()
            torch.save(state_dict, ckp)
            model.train()
  • out = model(X, Y) 前向傳播,計算輸出
  • scaler.scale(loss).backward() 反向傳播,計算梯度,執行 accumulation_steps 后更新梯度
  • model.eval()model.train() 分別是模型評估和訓練,并保存當前模型到指定的文件夾

本人在T4的GPU上,跑了30+小時完成迭代訓練,如果使用CPU時間會X4,我在附錄中放了完整的代碼,有興趣的可以跑一下。

附錄

完成代碼:

import os
import time
import math
import warnings
import inspect
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from contextlib import nullcontext
from model.model import Transformer
from torch.utils.data import Dataset
from transformers import PretrainedConfig
from typing import Any, Optional, Tuple
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
os.environ["TOKENIZERS_PARALLELISM"] = "false"

warnings.filterwarnings('ignore')
basepath = "../datasets"

class MyPretrainConfig(PretrainedConfig):
    model_type = "myllm"

    def __init__(
            self,
            dim: int = 512,
            n_layers: int = 8,
            n_heads: int = 16,
            n_kv_heads: int = 8,
            vocab_size: int = 6400,
            hidden_dim: int = None,
            multiple_of: int = 64,
            norm_eps: float = 1e-5,
            max_seq_len: int = 512,
            dropout: float = 0.0,
            flash_attn: bool = True,
            num_experts_per_tok=2,
            n_routed_experts=4,
            n_shared_experts: bool = True,
            scoring_func='softmax',
            aux_loss_alpha=0.01,
            seq_aux=True,
            norm_topk_prob=True,
            **kwargs,
    ):
        self.dim = dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.vocab_size = vocab_size
        self.hidden_dim = hidden_dim
        self.multiple_of = multiple_of
        self.norm_eps = norm_eps
        self.max_seq_len = max_seq_len
        self.dropout = dropout
        self.flash_attn = flash_attn
        self.num_experts_per_tok = num_experts_per_tok  # 每個token選擇的專家數量
        self.n_routed_experts = n_routed_experts        # 總的專家數量
        self.n_shared_experts = n_shared_experts        # 共享專家
        self.scoring_func = scoring_func                # 評分函數,默認為'softmax'
        self.aux_loss_alpha = aux_loss_alpha            # 輔助損失的alpha參數
        self.seq_aux = seq_aux                          # 是否在序列級別上計算輔助損失
        self.norm_topk_prob = norm_topk_prob            # 是否標準化top-k概率
        super().__init__(**kwargs)

class PretrainDataset(Dataset):
    def __init__(self, data_path_lst, max_length=512, memmap=False):
        super().__init__()
        if memmap:
            with open(data_path_lst[0], 'r') as f:
                nbytes = f.seek(0, 2)
                flen = f.tell() // np.dtype('uint16').itemsize
            self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length))
        else:
            data_lst = []
            for data_path in data_path_lst:
                with open(data_path, 'rb') as f:
                    data = np.fromfile(f, dtype=np.uint16)
                    data_lst.append(data)
            data = np.concatenate(data_lst)
            data = data[:max_length * int(len(data) / max_length)]
            self.data = data.reshape(-1, max_length)
        print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
        print("downloading finished.....")

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index: int):
        sample = self.data[index]
        X = np.array(sample[:-1]).astype(np.int64)
        Y = np.array(sample[1:]).astype(np.int64)

        return torch.from_numpy(X), torch.from_numpy(Y)
    
class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cos = torch.cos(freqs)  # real part
    freqs_sin = torch.sin(freqs)  # imaginary part
    return freqs_cos, freqs_sin

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cos: torch.Tensor,
    freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:

    # reshape xq and xk to match the complex representation
    xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
    xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)

    # reshape freqs_cos and freqs_sin for broadcasting
    freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
    freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)

    # apply rotation using real numbers
    xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
    xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
    xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
    xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos

    # flatten last two dimensions
    xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
    xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)

    return xq_out.type_as(xq), xk_out.type_as(xk)

def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    bs, slen, n_kv_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :]
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
    )

class Attention(nn.Module):
    def __init__(self, args: MyPretrainConfig):
        super().__init__()
        self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        assert args.n_heads % self.n_kv_heads == 0
        model_parallel_size = 1
        self.n_local_heads = args.n_heads // model_parallel_size
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = args.dim // args.n_heads
        self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        self.dropout = args.dropout

        # use flash attention or a manual implementation?
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if not self.flash:
            print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
            mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
            mask = torch.triu(mask, diagonal=1)
            self.register_buffer("mask", mask)

    def forward(
        self,
        x: torch.Tensor,
        freqs_cos: torch.Tensor,
        freqs_sin: torch.Tensor,
    ):
        bsz, seqlen, _ = x.shape

        # QKV
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        # RoPE relative positional embeddings
        xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)

        # grouped multiquery attention: expand out keys and values
        xk = repeat_kv(xk, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)
        xv = repeat_kv(xv, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)

        # make heads into a batch dimension
        xq = xq.transpose(1, 2)  # (bs, n_local_heads, seqlen, head_dim)
        xk = xk.transpose(1, 2)
        xv = xv.transpose(1, 2)

        # flash implementation
        if self.flash:
            output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
        else:
            # manual implementation
            scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
            assert hasattr(self, 'mask')
            scores = scores + self.mask[:, :, :seqlen, :seqlen]   # (bs, n_local_heads, seqlen, cache_len + seqlen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = torch.matmul(scores, xv)  # (bs, n_local_heads, seqlen, head_dim)

        # restore time as batch dimension and concat heads
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        # final projection into the residual stream
        output = self.wo(output)
        output = self.resid_dropout(output)
        return output

class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
        super().__init__()
        if hidden_dim is None:
            hidden_dim = 4 * dim
            hidden_dim = int(2 * hidden_dim / 3)
            hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))

class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, args: MyPretrainConfig):
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.head_dim = args.dim // args.n_heads
        self.attention = Attention(args)
        self.feed_forward = FeedForward(
            dim=args.dim,
            hidden_dim=args.hidden_dim,
            multiple_of=args.multiple_of,
            dropout=args.dropout,
        )
        self.layer_id = layer_id
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

    def forward(self, x, freqs_cos, freqs_sin):
        h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
        out = h + self.feed_forward.forward(self.ffn_norm(h))
        return out

class Transformer(PreTrainedModel):
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: MyPretrainConfig):
        super().__init__(params)
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(params.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)

        # share the unembedding parameters with the embedding parameters
        self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying

        # some useful precompute for the RoPE relative positional embeddings
        freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))

        # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        freqs_cos = self.freqs_cos[:seqlen]
        freqs_sin = self.freqs_sin[:seqlen]

        for layer in self.layers:
            h = layer(h, freqs_cos, freqs_sin)
        h = self.norm(h)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the output on the very last position
            logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
            self.last_loss = None

        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)
        return self.OUT

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        print(f"using fused AdamW: {use_fused}")

        return optimizer

    def estimate_mfu(self, fwdbwd_per_iter, dt):
        """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
        # first estimate the number of flops we do per iteration.
        # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
        N = sum(p.numel() for p in self.parameters())
        cfg = self.params
        L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
        flops_per_token = 6*N + 12*L*H*Q*T
        flops_per_fwdbwd = flops_per_token * T
        flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
        # express our flops throughput as ratio of A100 bfloat16 peak flops
        flops_achieved = flops_per_iter * (1.0/dt) # per second
        flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
        mfu = flops_achieved / flops_promised
        return mfu

    @torch.inference_mode()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        Also note this is a super inefficient version of sampling with no key/value cache.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
            # forward the model to get the logits for the index in the sequence
            logits = self(idx_cond)
            logits = logits[:, -1, :] # crop to just the final time step
            if temperature == 0.0:
                # "sample" the single most likely index
                _, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                # pluck the logits at the final step and scale by desired temperature
                logits = logits / temperature
                # optionally crop the logits to only the top k options
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')
                # apply softmax to convert logits to (normalized) probabilities
                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx

def get_lr(it, all):
    warmup_iters = 0
    lr_decay_iters = all
    min_lr = learning_rate / 10

    if it < warmup_iters:
        return learning_rate * it / warmup_iters
    if it > lr_decay_iters:
        return min_lr
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return min_lr + coeff * (learning_rate - min_lr)

def init_model():
    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    model = Transformer(lm_config).to(device)
    print(f'LLM總參數量:{count_parameters(model) / 1e6:.3f} 百萬')
    return model


if __name__ == "__main__":
    # -----------------------------------------------------------------------------
    lm_config = MyPretrainConfig()
    max_seq_len = lm_config.max_seq_len
    out_dir = 'out'
    epochs = 20             # 訓練輪數
    batch_size = 8          # batch_size
    learning_rate = 1e-4    # 學習率
    device = 'cuda:0'       # or cpu
    dtype = 'bfloat16'
    save_dir = os.path.join(out_dir)
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(out_dir, exist_ok=True)
    tokens_per_iter = batch_size * max_seq_len
    torch.manual_seed(1337)
    device_type = device if "cuda" in device else "cpu"
    print(f"device_type: {device_type}")
    ctx = (
        nullcontext()
        if device_type == "cpu"
        else torch.cuda.amp.autocast()
    )
    # -----------------------------------------------------------------------------

    # -----init dataloader------
    data_path_list = [f'{basepath}/pretrain_data.bin']
    train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
    train_sampler = None
    num_workers = 16  # 可以根據系統的 CPU 核心數來調整
    train_loader = DataLoader(
        train_ds,
        batch_size=batch_size,
        pin_memory=True,
        drop_last=False,
        shuffle=False,
        num_workers=num_workers,
        sampler=train_sampler
    )

    # init model
    model = init_model()
    print(model)
    scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    # training loop
    accumulation_steps = 8
    iter_per_epoch = len(train_loader)
    for epoch in range(epochs):
        start_time = time.time()

        for step, (X, Y) in enumerate(train_loader):
            X = X.to(device)
            Y = Y.to(device)

            # 設置學習率
            lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # 前向傳播和損失計算
            with ctx:
                out = model(X, Y)
                loss = out.last_loss

            # 反向傳播
            scaler.scale(loss).backward()

            # 梯度剪裁和更新參數
            if (step + 1) % accumulation_steps == 0:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                scaler.step(optimizer)
                scaler.update()

            # 清零梯度
            optimizer.zero_grad(set_to_none=True)

            if step % 100 == 0:
                spend_time = time.time() - start_time
                print(
                    'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
                        epoch,
                        epochs,
                        step,
                        iter_per_epoch,
                        loss.item(),
                        optimizer.param_groups[-1]['lr'],
                        spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
                model.eval()
                ckp = f'{save_dir}/pretrain_{lm_config.dim}.pth'
                state_dict = model.state_dict()
                torch.save(state_dict, ckp)
                model.train()

參考

(1)https://github.com/jingyaogong/minimind?tab=readme-ov-file#%E6%95%B0%E6%8D%AE%E9%9B%86%E4%B8%8B%E8%BD%BD%E5%9C%B0%E5%9D%80
(2)https://github.com/karpathy/llama2.c/blob/master/train.py

責任編輯:武曉燕 來源: 周末程序猿
相關推薦

2024-12-26 00:46:25

機器學習LoRA訓練

2024-11-26 09:33:44

2025-04-03 15:40:41

機器學習大模型DeepSeek

2024-12-09 00:00:10

2025-01-10 08:38:10

2025-04-03 15:46:53

2020-08-10 15:05:02

機器學習人工智能計算機

2019-05-07 11:18:51

機器學習人工智能計算機

2017-03-24 15:58:46

互聯網

2022-03-28 09:00:00

SQL數據庫機器學習

2017-12-26 13:53:31

深度學習遷移學習

2023-02-28 13:09:53

訓練模型

2023-06-24 19:59:40

2025-06-19 10:09:55

2025-06-24 03:00:00

2024-01-03 18:53:13

語言模型LLM

2017-07-11 10:19:24

淺層模型機器學習優化算法

2022-07-07 14:06:39

LiBai模型庫

2022-09-06 08:00:00

機器學習金融數據科學
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 一本一道久久a久久精品蜜桃 | 精品久久久久久久久久久久 | 91精品国产91久久久久久 | 一区二区三区在线播放 | 久久高清精品 | 九九精品热 | 一级黄色片在线免费观看 | 亚洲手机视频在线 | 人妖av | 久久大陆 | 成人激情视频免费观看 | 免费久久网 | 亚洲欧洲成人av每日更新 | 五月精品视频 | 亚洲精品3 | 99亚洲精品 | 国产精选一区 | 97色在线视频 | 精品日韩一区 | 亚洲一区二区视频 | 亚洲欧洲中文 | 精品在线看 | 亚洲天天干 | 亚洲一区二区三区免费观看 | 亚洲国产精品视频一区 | 国产成人在线一区 | 中文字幕乱码一区二区三区 | 国产精品国产a级 | 国产亚洲精品美女久久久久久久久久 | 亚洲久久一区 | 国产区视频在线观看 | 中文字幕在线观看一区 | 成人在线观看免费爱爱 | 一二三四在线视频观看社区 | 中文字幕在线一区 | 国产毛片av | 国产精品久久久久久婷婷天堂 | 午夜性色a√在线视频观看9 | 亚洲精品在线视频 | 亚洲福利| 九九热在线视频免费观看 |