成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

人工智能 無人駕駛 智能汽車
本文希望從技術(shù)角度客觀分析和回答以下問題:自動駕駛等級提升需要解決什么關(guān)鍵問題?怎樣的自動駕駛方案更加具有實現(xiàn)大規(guī)模無人駕駛的可能性?自動駕駛作為現(xiàn)實世界的AI問題,難點在哪里?

  [[438879]]

2021年10月25日,特斯拉市值站上萬億美金,成為美股第五家市值破萬億的企業(yè),幾乎超過美股全部主要車企市值的總和。特斯拉在資本市場的成功,刺激著投資者的神經(jīng),也促使市場再一次將視野聚焦在自動駕駛領(lǐng)域,進(jìn)一步思考自動駕駛技術(shù)路線的發(fā)展方向。

本文希望從技術(shù)角度客觀分析和回答以下問題:自動駕駛等級提升需要解決什么關(guān)鍵問題?怎樣的自動駕駛方案更加具有實現(xiàn)大規(guī)模無人駕駛的可能性?自動駕駛作為現(xiàn)實世界的AI問題,難點在哪里?以上問題促使我們理性客觀地思考該如何去實現(xiàn)自動駕駛——這一承載了太多期望、不斷挑撥大眾神經(jīng)的技術(shù)生產(chǎn)力變革,從而推動行業(yè)冷靜且務(wù)實地向前發(fā)展。

1.自動駕駛的眼睛:基于高質(zhì)量圖像成像的視覺雷達(dá)

隨著自動駕駛等級的不斷提高,控制權(quán)和責(zé)任主體逐漸從駕駛員轉(zhuǎn)換為車輛,智駕系統(tǒng)的定位也將由擴(kuò)增人的感知能力到接管車輛自主駕駛。由此對智駕系統(tǒng)之于物理世界環(huán)境理解的要求完全不同,將由對物理世界部分信息的提取提升到事無巨細(xì)的全面感知與理解。而這種變化,首要就是對2D圖像成像與3D建模的越來越高的要求:1)更高分辨率和環(huán)境適應(yīng)度的2D圖像成像;2)對物理世界準(zhǔn)確且稠密的實時3D建模。

Camera是自動駕駛感知物理世界最重要的傳感器,其分辨率的提升將極大的提升圖像的信息承載量,使得自動駕駛系統(tǒng)能夠感知更加細(xì)節(jié)和更遠(yuǎn)距離的行車環(huán)境。當(dāng)前主流自動駕駛前視攝像頭的分辨率已經(jīng)到800萬像素以上,而更高的分辨率也是未來必然發(fā)生的事情。自動駕駛汽車面臨的是一個開放性的外部環(huán)境,除了分辨率的提升,還需要提升自動駕駛在各種行車路況下的圖像成像質(zhì)量,比如不同的光線環(huán)境,傍晚、夜晚等,不同的氣候環(huán)境,雨雪霧天等。相對于傳統(tǒng)汽車應(yīng)用的車載成像,自動駕駛對于車載成像質(zhì)量的要求將極大提升,如何通過成像計算獲取更高質(zhì)量的圖像就成為一個要解決的關(guān)鍵性問題。

自動駕駛汽車在三維物理世界中運行,必然要求對物理世界進(jìn)行更加深刻的三維理解。當(dāng)前的高級別輔助駕駛在道路上不斷出現(xiàn)各種各樣的事故,這些事故的發(fā)生很大程度上是由于沒有識別到未被樣本庫所覆蓋的異形、非標(biāo)等物體,比如一輛拉著一棵樹的貨車等,而這些corner case是無法被窮盡的。對于行車環(huán)境的實時稠密3D建模不僅可以識別異形和非標(biāo)等物體,還能判斷路面坑洼與起伏,這無疑將大大提升自動駕駛的安全級別。當(dāng)前自動駕駛的3D環(huán)境感知,主要依賴激光雷達(dá)等主動投射測量裝置,但其在分辨率上遠(yuǎn)低于Camera,也不具備顏色信息。隨著深度學(xué)習(xí)的發(fā)展,單目深度估計、雙目立體視覺、SFM、MVS等問題已經(jīng)可以被深度神經(jīng)網(wǎng)絡(luò)所建模,從而可以基于多目視覺通過AI的方法實時生成3D點云,其視覺點云天然與圖像對齊,并且其分辨率也能達(dá)到圖像分辨率的級別。因此,如何通過多目視覺實現(xiàn)高分辨率的實時稠密3D建模,即視覺雷達(dá),是另外一個要解決的關(guān)鍵性問題。

視覺傳感器的信息承載量極高,目前遠(yuǎn)未被充分挖掘,但無論2D圖像成像還是實時稠密3D建模都需要強(qiáng)有力的算法和算力進(jìn)行支撐,這需要算法和算力進(jìn)行協(xié)同設(shè)計。視覺傳感器+算力+算法的傳感器計算模式,將更加本質(zhì)的推動解決自動駕駛當(dāng)前面臨的關(guān)鍵問題,即從2D和3D層面對物理世界進(jìn)行事無巨細(xì)的感知與理解。

鑒智機(jī)器人核心團(tuán)隊擁有超過十年的圖像處理、AI算法和算力設(shè)計的行業(yè)經(jīng)驗,將以視覺傳感器為核心,通過解決車載ISP、視覺雷達(dá)等視覺傳感器2D、3D成像的核心問題,打造更加強(qiáng)大的自動駕駛之眼,從而推動自動駕駛安全等級的提升。

1.1 從手機(jī)ISP到車載ISP

ISP(Image Signal Processor)是指通過一系列數(shù)字圖像處理算法完成對數(shù)字圖像的成像處理。在攝像機(jī)成像的整個環(huán)節(jié)中,ISP負(fù)責(zé)接收感光元件的原始信號數(shù)據(jù),可以理解為整個攝像機(jī)圖像輸出的第一步處理流程。ISP在提高圖像質(zhì)量、增強(qiáng)數(shù)據(jù)的一致性等方面有著極其關(guān)鍵的作用。

得益于智能手機(jī)的發(fā)展和手機(jī)攝像頭像素越來越高,手機(jī)ISP在過去幾年得到了快速的發(fā)展和進(jìn)步,手機(jī)拍照和錄像的質(zhì)量也越來越高,甚至到了驚艷的地步。比如在夜晚等場景,可以拍到比人眼看到的更清晰、光照更充足、色彩更豐富的照片;比如在進(jìn)出隧道等光照變化劇烈的場景,也可以錄制出比人眼表現(xiàn)更穩(wěn)定、更清晰的視頻。這些效果除了源于手機(jī)攝像頭硬件上的升級,專門的AI ISP處理算法和處理芯片也起到了至關(guān)重要的作用。

隨著自動駕駛對車載成像質(zhì)量的階躍式提升需求,車載ISP,特別是針對駕駛場景優(yōu)化的AI ISP處理算法和處理芯片,將迎來爆發(fā)式的發(fā)展。AI在車載ISP整個流程中將變得越來越重要,特別是在降噪、去模糊、HDR等問題上,可以在夜晚、陽光直射、進(jìn)出隧道等暗光、強(qiáng)光、高動態(tài)場景得到遠(yuǎn)超人眼的成像效果,同時最大程度上解決由Sensor引起的噪點、模糊等問題。將AI計算前置在ISP計算Pipeline中,通過流式計算,使得ISP的計算Pipeline不被打斷,也將大大提升AI ISP的性能功耗比。

鑒智機(jī)器人擁有全鏈路的芯片級ISP IP的設(shè)計能力,將解決ISP特別是AI ISP在車載場景的核心問題,讓車載攝像頭成像更清晰,從而進(jìn)一步提高視覺雷達(dá)點云生成和圖像語義感知等后續(xù)任務(wù)的準(zhǔn)確性。

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

圖1:鑒智機(jī)器人擁有全鏈路的ISP算法和算法硬核化設(shè)計能力

1.2 從2D感知到視覺雷達(dá)

面對大規(guī)模自動駕駛,對3D點云的信息稠密程度、場景泛化性、性能可擴(kuò)展性方面提出了更高的要求。基于視覺雷達(dá),通過雙目或者多目立體視覺計算,產(chǎn)生實時稠密的3D點云是更優(yōu)的方式。

雙目立體視覺是機(jī)器視覺的一種重要形式,與人眼類似,它是基于視差原理,通過計算圖像對應(yīng)點間的位置偏差,來獲取物體三維幾何信息的方法,和基于TOF、結(jié)構(gòu)光原理的深度相機(jī)不同,它不對外主動投射光源,完全依靠拍攝的兩張圖片(彩色RGB或者灰度圖)來計算深度。

傳統(tǒng)的雙目立體匹配算法針對弱紋理、反光等區(qū)域效果比較差,同時對于物體語義信息利用比較少,算法適用范圍具有局限性,點云效果上限比較明顯。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,基于CNN、Cost Volume、Transformer的立體匹配算法展現(xiàn)出來了極強(qiáng)的算法效果和潛力。目前知名自動駕駛數(shù)據(jù)集KITTI上的立體匹配任務(wù)排名靠前的基本都是基于深度學(xué)習(xí)的算法。基于深度學(xué)習(xí)的雙目立體匹配算法對于計算芯片的AI算力提出了比較高的要求,對于研發(fā)模式也提出了新的要求,需要從傳統(tǒng)的雙目相機(jī)研發(fā)模式變成以AI為核心、軟硬結(jié)合、數(shù)據(jù)驅(qū)動的研發(fā)模式。

從雙目立體視覺更進(jìn)一步,充分利用相機(jī)的運動信息和多個相機(jī)間的幾何約束,通過相機(jī)姿態(tài)估計、深度估計、光流估計、MVS等算法,以及任務(wù)之間互相監(jiān)督的一系列自監(jiān)督算法,可以得到360度的點云數(shù)據(jù),也就是視覺雷達(dá),從而形成與圖像分辨率相匹配的稠密點云。同時,以攝像頭+算力+算法為核心的視覺雷達(dá),還具有產(chǎn)業(yè)鏈成熟可控、成本可控、器件穩(wěn)定性有保證、滿足車規(guī)等優(yōu)勢,更容易實現(xiàn)大規(guī)模前裝量產(chǎn)上車使用。

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

圖2:鑒智機(jī)器人視覺雷達(dá)Roadmap

2. 自動駕駛的大腦:全流程數(shù)據(jù)驅(qū)動的強(qiáng)單車智能

自動駕駛的大腦負(fù)責(zé)從感知到?jīng)Q策的駕駛?cè)鞒蹋彩亲詣玉{駛最復(fù)雜、最核心和難度最高的部分。傳統(tǒng)的以規(guī)則為核心的軟件1.0工程化系統(tǒng),在可維護(hù)性、擴(kuò)展性和進(jìn)化性上都具有一定的局限性。以AI和軟件2.0為核心,全流程數(shù)據(jù)驅(qū)動的感知、預(yù)測、規(guī)控算法和強(qiáng)單車智能的解決方案,無疑是實現(xiàn)大規(guī)模無人駕駛更可行的方案。

鑒智機(jī)器人核心團(tuán)隊在AI算法和應(yīng)用、軟件2.0的基礎(chǔ)設(shè)施、數(shù)據(jù)驅(qū)動的大規(guī)模實踐上擁有豐富的經(jīng)驗,將通過全流程數(shù)據(jù)驅(qū)動的自動駕駛大腦,建立強(qiáng)單車智能,從而降低對外部基礎(chǔ)設(shè)施的依賴,更加利于自動駕駛的復(fù)制與推廣。

2.1 深度學(xué)習(xí)帶來的2D感知技術(shù)突破

感知是自動駕駛獲取信息的第一步, 所謂感知是指通過攝像頭或其他傳感器識別所看到的物體并理解該物體是什么,這對自動駕駛是至關(guān)重要的環(huán)節(jié)。自動駕駛車輛首先是要識別車道線,然后還要識別紅綠燈、標(biāo)志牌,除此之外就是識別障礙物比如前后左右有沒有車輛,有沒有行人,才能夠進(jìn)一步規(guī)劃行駛路線。

過去十年是人工智能技術(shù)的黃金十年,深度學(xué)習(xí)改變了計算機(jī)視覺整個領(lǐng)域,也帶來了2D感知各個方向技術(shù)的突破。2D感知主要有圖像分類、圖像(物體)識別、細(xì)粒度識別(人臉識別)等方向,所采用的技術(shù)也從最早的模板匹配、線性分類到現(xiàn)在所廣泛使用的深層卷積神經(jīng)網(wǎng)絡(luò),再到最近刷新各大視覺任務(wù)榜單的Transformer。隨著硬件計算能力的不斷提升、算法范式的不斷改進(jìn)、可利用數(shù)據(jù)資源的不斷增長,基于攝像頭的2D感知已經(jīng)成為了乘用車智能駕駛的主流方案,同時也成為了很多解決方案的核心差異點。

鑒智機(jī)器人核心團(tuán)隊在國內(nèi)最早基于深度學(xué)習(xí)在2D視覺感知各個方向開展系統(tǒng)性研究和大規(guī)模落地應(yīng)用,在眾多全球最具影響力的2D感知AI比賽和評測中獲得冠軍,發(fā)表頂級會議和期刊論文幾十余篇,在多個業(yè)務(wù)領(lǐng)域?qū)崿F(xiàn)了人工智能2D感知技術(shù)的大規(guī)模應(yīng)用落地。

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

(a)目標(biāo)檢測、人體骨骼點

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

(b)全景分割

 

 

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

(c)360°視覺感知

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成
(d)單目測距

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

圖3:鑒智機(jī)器人在2D感知方向具有世界一流的核心能力

2.2 從2D感知到4D感知

如果說2D感知還是在平面上檢測、識別、分割物體,那么加入深度信息后,基礎(chǔ)的2D感知即轉(zhuǎn)化為3D感知。如果進(jìn)一步在3D的基礎(chǔ)上加入時間這一維度,進(jìn)化得到的則是4D感知。在自動駕駛領(lǐng)域,4D感知可以完整且連續(xù)的探測車輛周圍的物體。

基于深度學(xué)習(xí)和三維視覺技術(shù)不斷發(fā)展,隨著Cost Volume、Optical Flow、differentiable Homography、Transformer等技術(shù)的成熟,以及多傳感器融合、眾包重建、稠密重建、自動標(biāo)注等方向不斷發(fā)展,可以高效率的提供高質(zhì)量、大規(guī)模的4D場景數(shù)據(jù),端到端的4D感知正在成為技術(shù)趨勢。相比于傳統(tǒng)的2D感知+后融合的方案,端到端的4D感知擁有很多優(yōu)勢,可以解決測距抖動較大、多攝像頭拼接不準(zhǔn)確、時序結(jié)果不穩(wěn)定、迭代效率較低等一系列問題。

更進(jìn)一步,基于端到端的4D感知,可以進(jìn)行更好的4D預(yù)測,一方面可對于交通參與者進(jìn)行更優(yōu)的運動軌跡預(yù)測,從而實現(xiàn)性能更加優(yōu)異的規(guī)劃控制;另一方面可對于道路行駛區(qū)域預(yù)測更加精細(xì)的3D結(jié)構(gòu)化信息,在線生成局部實時3D地圖,降低對高精地圖等基礎(chǔ)設(shè)施的依賴。

通過傳感器計算打造視覺雷達(dá),下一代自動駕駛系統(tǒng)的關(guān)鍵構(gòu)成

圖4:鑒智機(jī)器人針對復(fù)雜路口駕駛場景的4D感知結(jié)果

自動駕駛被認(rèn)為是目前最重要的硬科技創(chuàng)新之一。在汽車行業(yè)百年未有之大變革的歷史性時刻,中國由于在電動汽車領(lǐng)域的提前布局、全面開花,以及完整產(chǎn)業(yè)鏈的巨大優(yōu)勢,國內(nèi)企業(yè)在自動駕駛方向擁有非常好的機(jī)會和產(chǎn)業(yè)優(yōu)勢,有機(jī)會通過電動化和智能化實現(xiàn)百年汽車工業(yè)這一最重要的支柱產(chǎn)業(yè)的超車和領(lǐng)先。但自動駕駛的發(fā)展速度仍然低于大眾和市場的預(yù)期,這里存在若干影響自動駕駛等級提升的關(guān)鍵性問題亟待解決,鑒智機(jī)器人基于自身在AI算法、AI算力層面的積累,致力于解決自動駕駛成像計算和下一代自動駕駛方案的關(guān)鍵性問題,從而推動自動駕駛的創(chuàng)新發(fā)展。

作者簡介

[[438885]]

都大龍:鑒智機(jī)器人聯(lián)合創(chuàng)始人,碩士畢業(yè)于中科院計算所,現(xiàn)清華大學(xué)創(chuàng)新領(lǐng)軍博士在讀。曾任某AI科技公司研發(fā)副總裁,地平線算法總監(jiān),百度IDL架構(gòu)師。曾深度參與國內(nèi)首款A(yù)I芯片的產(chǎn)品研發(fā),并實現(xiàn)AI2B產(chǎn)品的大規(guī)模落地。因其在卷積神經(jīng)網(wǎng)絡(luò)、序列學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)訓(xùn)練框架方面的突出貢獻(xiàn),曾連續(xù)兩次獲得百度工程師最高榮譽(yù)-“百度百萬美金最高獎”。發(fā)表數(shù)十篇AI領(lǐng)域國際頂級會議,并帶領(lǐng)團(tuán)隊在MSCOCO、FRVT等多項AI比賽中獲得世界一流成績。

[[438886]]

黃冠:鑒智機(jī)器人算法負(fù)責(zé)人,擁有十年的深度學(xué)習(xí)/機(jī)器學(xué)習(xí)/計算機(jī)視覺經(jīng)驗,在國內(nèi)最早開始深度學(xué)習(xí)在目標(biāo)檢測、分割、關(guān)鍵點等方向的系統(tǒng)性研究和應(yīng)用。多次獲得FRVT、COCO等全球最具影響力AI比賽冠軍,發(fā)布全球最大的公開人臉數(shù)據(jù)集WebFace260M,在人工智能頂級會議和期刊上發(fā)表論文十余篇,支撐了多個領(lǐng)域人工智能技術(shù)的大規(guī)模落地應(yīng)用,擁有豐富的學(xué)術(shù)研究和產(chǎn)業(yè)落地經(jīng)驗。目前致力于研發(fā)全流程數(shù)據(jù)驅(qū)動的算法,用于下一代自動駕駛解決方案。

 

 

 

責(zé)任編輯:張燕妮 來源: 機(jī)器之心Pro
相關(guān)推薦

2023-12-16 13:16:00

模型AI自動駕駛

2022-08-30 10:28:50

自動駕駛系統(tǒng)

2024-04-15 11:40:37

自動駕駛端到端

2013-07-27 21:28:44

2023-04-07 13:05:39

自動駕駛雷達(dá)

2022-07-06 11:38:40

人工智能AI

2020-09-16 10:28:54

邊緣計算云計算數(shù)據(jù)中心

2020-09-27 17:27:58

邊緣計算云計算技術(shù)

2024-02-26 14:46:53

移動計算人工智能5G

2010-09-01 17:05:04

無線網(wǎng)絡(luò)

2022-04-25 15:13:03

自動駕駛傳感器

2022-02-25 10:56:08

自動駕駛傳感器技術(shù)

2022-12-08 09:25:58

自動駕駛技術(shù)

2020-10-27 12:53:06

自動駕駛AI人工智能

2013-06-27 11:21:17

2023-04-28 10:02:50

2015-09-28 16:24:34

YARNHadoop計算

2019-01-03 14:21:51

CPUGPU系統(tǒng)

2023-06-25 10:04:50

自動駕駛智能

2021-12-03 09:20:27

自動駕駛數(shù)據(jù)汽車
點贊
收藏

51CTO技術(shù)棧公眾號

主站蜘蛛池模板: 久久久久久久久久久一区二区 | www.99re| 91亚洲欧美| 亚洲综合色视频在线观看 | 一区二区三区欧美 | 韩国毛片视频 | 亚洲精品国产第一综合99久久 | 国产不卡在线 | caoporn地址 | 91欧美激情一区二区三区成人 | 免费av一区二区三区 | 国产99精品 | 久久久久久国产精品免费免费 | 日韩中文字幕一区 | 国产午夜亚洲精品不卡 | 久久精品欧美视频 | japan25hdxxxx日本 做a的各种视频 | 天天宗合网 | 日韩中文字幕 | 欧美国产日韩在线 | 91国自产| 国产精品一区二区福利视频 | 欧美九九 | www.com久久久| 国产在线精品免费 | 雨宫琴音一区二区在线 | 精品亚洲一区二区 | 日本黄色免费片 | 亚洲激精日韩激精欧美精品 | 日韩成人在线网址 | 九九av| 在线国产视频 | 日韩国产一区二区三区 | 中文字幕一区二区三区四区五区 | 亚洲视频免费播放 | 高清国产一区二区 | 婷婷色网 | 欧美成人激情 | 精品在线一区二区 | 久久成人精品视频 | 精品亚洲第一 |