成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

這四種情況下,才是考慮分庫分表的時候!

數據庫 其他數據庫
不管是IO瓶頸還是CPU瓶頸,最終都會導致數據庫的活躍連接數增加,進而逼近甚至達到數據庫可承載的活躍連接數的閾值。

[[375626]]

 數據庫瓶頸

不管是IO瓶頸還是CPU瓶頸,最終都會導致數據庫的活躍連接數增加,進而逼近甚至達到數據庫可承載的活躍連接數的閾值。在業務service來看,

就是可用數據庫連接少甚至無連接可用,接下來就可以想象了(并發量、吞吐量、崩潰)。

IO瓶頸

  •  第一種:磁盤讀IO瓶頸,熱點數據太多,數據庫緩存放不下,每次查詢會產生大量的IO,降低查詢速度->分庫和垂直分表
  •  第二種:網絡IO瓶頸,請求的數據太多,網絡帶寬不夠 ->分庫

CPU瓶頸

  •  第一種:SQl問題:如SQL中包含join,group by, order by,非索引字段條件查詢等,增加CPU運算的操作->SQL優化,建立合適的索引,在業務Service層進行業務計算。
  •  第二種:單表數據量太大,查詢時掃描的行太多,SQl效率低,增加CPU運算的操作。->水平分表。

水平分庫

  •  1、概念:以字段為依據,按照一定策略(hash、range等),將一個庫中的數據拆分到多個庫中。
  •  2、結果:
    •  每個庫的結構都一樣
    •  每個庫中的數據不一樣,沒有交集
    •  所有庫的數據并集是全量數據
  •  3、場景:系統絕對并發量上來了,分表難以根本上解決問題,并且還沒有明顯的業務歸屬來垂直分庫的情況下。
  •  4、分析:庫多了,io和cpu的壓力自然可以成倍緩解

水平分表

  •  1、概念:以字段為依據,按照一定策略(hash、range等),講一個表中的數據拆分到多個表中。
  •  2、結果:
    •  每個表的結構都一樣
    •  每個表的數據不一樣,沒有交集,所有表的并集是全量數據。
  •  3、場景:系統絕對并發量沒有上來,只是單表的數據量太多,影響了SQL效率,加重了CPU負擔,以至于成為瓶頸,可以考慮水平分表。
  •  4、分析:單表的數據量少了,單次執行SQL執行效率高了,自然減輕了CPU的負擔。

垂直分庫 

 

    1、概念:以表為依據,按照業務歸屬不同,將不同的表拆分到不同的庫中。

    2、結果:

        每個庫的結構都不一樣

        每個庫的數據也不一樣,沒有交集

        所有庫的并集是全量數據

    3、場景:系統絕對并發量上來了,并且可以抽象出單獨的業務模塊的情況下。

    4、分析:到這一步,基本上就可以服務化了。例如:隨著業務的發展,一些公用的配置表、字典表等越來越多,這時可以將這些表拆到單獨的庫中,甚至可以服務化。再者,隨著業務的發展孵化出了一套業務模式,這時可以將相關的表拆到單獨的庫中,甚至可以服務化。

垂直分表

  •  1、概念:以字段為依據,按照字段的活躍性,將表中字段拆到不同的表中(主表和擴展表)。
  •  2、結果:
    •  每個表的結構不一樣。
    •  每個表的數據也不一樣,一般來說,每個表的字段至少有一列交集,一般是主鍵,用于關聯數據。
    •  所有表的并集是全量數據。
  •  3、場景:系統絕對并發量并沒有上來,表的記錄并不多,但是字段多,并且熱點數據和非熱點數據在一起,單行數據所需的存儲空間較大,以至于數據庫緩存的數據行減少,查詢時回去讀磁盤數據產生大量隨機讀IO,產生IO瓶頸。
  •  4、分析:可以用列表頁和詳情頁來幫助理解。垂直分表的拆分原則是將熱點數據(可能經常會查詢的數據)放在一起作為主表,非熱點數據放在一起作為擴展表,這樣更多的熱點數據就能被緩存下來,進而減少了隨機讀IO。拆了之后,要想獲取全部數據就需要關聯兩個表來取數據。

但記住千萬別用join,因為Join不僅會增加CPU負擔并且會將兩個表耦合在一起(必須在一個數據庫實例上)。關聯數據應該在service層進行,分別獲取主表和擴展表的數據,然后用關聯字段關聯得到全部數據。

分庫分表工具

  •  sharding-jdbc(當當)
  •  TSharding(蘑菇街)
  •  Atlas(奇虎360)
  •  Cobar(阿里巴巴)
  •  MyCAT(基于Cobar)
  •  Oceanus(58同城)
  •  Vitess(谷歌) 各種工具的利弊自查

分庫分表帶來的問題

分庫分表能有效緩解單機和單表帶來的性能瓶頸和壓力,突破網絡IO、硬件資源、連接數的瓶頸,同時也帶來一些問題,下面將描述這些問題和解決思路。

事務一致性問題

分布式事務

當更新內容同時存在于不同庫找那個,不可避免會帶來跨庫事務問題。跨分片事務也是分布式事務,沒有簡單的方案,一般可使用“XA協議”和“兩階段提交”處理。

分布式事務能最大限度保證了數據庫操作的原子性。但在提交事務時需要協調多個節點,推后了提交事務的時間點,延長了事務的執行時間,導致事務在訪問共享資源時發生沖突或死鎖的概率增高。隨著數據庫節點的增多,這種趨勢會越來越嚴重,從而成為系統在數據庫層面上水平擴展的枷鎖。

最終一致性

對于那些性能要求很高,但對一致性要求不高的系統,往往不苛求系統的實時一致性,只要在允許的時間段內達到最終一致性即可,可采用事務補償的方式。與事務在執行中發生錯誤立刻回滾的方式不同,事務補償是一種事后檢查補救的措施,一些常見的實現方法有:對數據進行對賬檢查,基于日志進行對比,定期同標準數據來源進行同步等。

跨節點關聯查詢join問題

切分之前,系統中很多列表和詳情表的數據可以通過join來完成,但是切分之后,數據可能分布在不同的節點上,此時join帶來的問題就比較麻煩了,考慮到性能,盡量避免使用Join查詢。解決的一些方法:

全局表

全局表,也可看做“數據字典表”,就是系統中所有模塊都可能依賴的一些表,為了避免庫join查詢,可以將這類表在每個數據庫中都保存一份。這些數據通常很少修改,所以不必擔心一致性的問題。

字段冗余

一種典型的反范式設計,利用空間換時間,為了性能而避免join查詢。例如,訂單表在保存userId的時候,也將userName也冗余的保存一份,這樣查詢訂單詳情順表就可以查到用戶名userName,就不用查詢買家user表了。但這種方法適用場景也有限,比較適用依賴字段比較少的情況,而冗余字段的一致性也較難保證。

數據組裝

在系統service業務層面,分兩次查詢,第一次查詢的結果集找出關聯的數據id,然后根據id發起器二次請求得到關聯數據,最后將獲得的結果進行字段組裝。這是比較常用的方法。

ER分片

關系型數據庫中,如果已經確定了表之間的關聯關系(如訂單表和訂單詳情表),并且將那些存在關聯關系的表記錄存放在同一個分片上,那么就能較好地避免跨分片join的問題,可以在一個分片內進行join。在1:1或1:n的情況下,通常按照主表的ID進行主鍵切分。

跨節點分頁、排序、函數問題

跨節點多庫進行查詢時,會出現limit分頁、order by排序等問題。分頁需要按照指定字段進行排序,當排序字段就是分頁字段時,通過分片規則就比較容易定位到指定的分片;當排序字段非分片字段時,就變得比較復雜.

需要先在不同的分片節點中將數據進行排序并返回,然后將不同分片返回的結果集進行匯總和再次排序,最終返回給用戶 如下圖:

上圖只是取第一頁的數據,對性能影響還不是很大。但是如果取得頁數很大,情況就變得復雜的多,因為各分片節點中的數據可能是隨機的,為了排序的準確性,需要將所有節點的前N頁數據都排序好做合并,最后再進行整體排序,這樣的操作很耗費CPU和內存資源,所以頁數越大,系統性能就會越差。

在使用Max、Min、Sum、Count之類的函數進行計算的時候,也需要先在每個分片上執行相應的函數,然后將各個分片的結果集進行匯總再次計算。

全局主鍵避重問題

在分庫分表環境中,由于表中數據同時存在不同數據庫中,主鍵值平時使用的自增長將無用武之地,某個分區數據庫自生成ID無法保證全局唯一。因此需要單獨設計全局主鍵,避免跨庫主鍵重復問題。這里有一些策略:

UUID

UUID標準形式是32個16進制數字,分為5段,形式是8-4-4-4-12的36個字符。

UUID是最簡單的方案,本地生成,性能高,沒有網絡耗時,但是缺點明顯,占用存儲空間多,另外作為主鍵建立索引和基于索引進行查詢都存在性能問題,尤其是InnoDb引擎下,UUID的無序性會導致索引位置頻繁變動,導致分頁。

結合數據庫維護主鍵ID表

在數據庫中建立sequence表: 

  1. CREATE TABLE `sequence` (    
  2.    `id` bigint(20) unsigned NOT NULL auto_increment,    
  3.    `stub` char(1) NOT NULL default '',    
  4.    PRIMARY KEY  (`id`),    
  5.    UNIQUE KEY `stub` (`stub`)    
  6.  ) ENGINE=MyISAM

stub字段設置為唯一索引,同一stub值在sequence表中只有一條記錄,可以同時為多張表生辰全局ID。使用MyISAM引擎而不是InnoDb,已獲得更高的性能。MyISAM使用的是表鎖,對表的讀寫是串行的,所以不用擔心并發時兩次讀取同一個ID。當需要全局唯一的ID時,執行:

 

  1. REPLACE INTO sequence (stub) VALUES ('a');    
  2. SELECT 1561439;   

此方案較為簡單,但缺點較為明顯:存在單點問題,強依賴DB,當DB異常時,整個系統不可用。配置主從可以增加可用性。另外性能瓶頸限制在單臺Mysql的讀寫性能。

另有一種主鍵生成策略,類似sequence表方案,更好的解決了單點和性能瓶頸問題。這一方案的整體思想是:建立2個以上的全局ID生成的服務器,每個服務器上只部署一個數據庫,每個庫有一張sequence表用于記錄當前全局ID。

表中增長的步長是庫的數量,起始值依次錯開,這樣就能將ID的生成散列到各個數據庫上

這種方案將生成ID的壓力均勻分布在兩臺機器上,同時提供了系統容錯,第一臺出現了錯誤,可以自動切換到第二臺獲取ID。但有幾個缺點:系統添加機器,水平擴展較復雜;每次獲取ID都要讀取一次DB,DB的壓力還是很大,只能通過堆機器來提升性能。

Snowflake分布式自增ID算法

Twitter的snowfalke算法解決了分布式系統生成全局ID的需求,生成64位Long型數字,組成部分:

  •  第一位未使用
  •  接下來的41位是毫秒級時間,41位的長度可以表示69年的時間
  •  5位datacenterId,5位workerId。10位長度最多支持部署1024個節點
  •  最后12位是毫秒內計數,12位的計數順序號支持每個節點每毫秒產生4096個ID序列。

數據遷移、擴容問題

當業務高速發展、面臨性能和存儲瓶頸時,才會考慮分片設計,此時就不可避免的需要考慮歷史數據的遷移問題。一般做法是先讀出歷史數據,然后按照指定的分片規則再將數據寫入到各分片節點中。此外還需要根據當前的數據量個QPS,以及業務發展速度,進行容量規劃,推算出大概需要多少分片(一般建議單個分片的單表數據量不超過1000W)。

什么時候考慮分庫分表

  •  能不分就不分

并不是所有表都需要切分,主要還是看數據的增長速度。切分后在某種程度上提升了業務的復雜程度。不到萬不得已不要輕易使用分庫分表這個“大招”,避免“過度設計”和“過早優化”。分庫分表之前,先盡力做力所能及的優化:升級硬件、升級網絡、讀寫分離、索引優化等。當數據量達到單表瓶頸后,在考慮分庫分表。

  •  數據量過大,正常運維影響業務訪問

這里的運維是指:對數據庫備份,如果單表太大,備份時需要大量的磁盤IO和網絡IO。對一個很大的表做DDL,MYSQL會鎖住整個表,這個時間會很長,這段時間業務不能訪問此表,影響很大。

大表經常訪問和更新,就更有可能出現鎖等待。

  •   隨著業務發展,需要對某些字段垂直拆分

這里就不舉例了。在實際業務中都可能會碰到,有些不經常訪問或者更新頻率低的字段應該從大表中分離出去。

  •  數據量快速增長

隨著業務的快速發展,單表中的數據量會持續增長,當性能接近瓶頸時,就需要考慮水平切分,做分庫分表了。 

 

責任編輯:龐桂玉 來源: 民工哥技術之路
相關推薦

2023-08-26 20:08:15

分庫分表Spring

2018-01-08 19:17:21

數據庫Oracle重啟

2017-06-08 12:52:34

Oracle數據庫重啟解決方案

2016-09-27 10:51:43

2016-09-06 16:53:55

2015-11-06 13:27:39

2009-07-16 10:53:11

iBATIS 使用

2022-07-28 13:11:45

箭頭函數前端代碼

2010-04-25 17:34:30

負載均衡實現

2017-09-03 08:10:54

2024-11-29 08:20:23

Rust內存泄漏

2010-07-14 09:15:30

云計算模式

2021-10-10 22:10:47

手機開機電池

2017-02-08 14:46:50

DevOps過渡技能

2020-07-30 17:59:34

分庫分表SQL數據庫

2010-10-22 17:22:05

sql server刪

2016-10-19 12:54:15

數據聚類關聯

2022-03-29 20:52:07

分析方法用戶

2017-08-09 14:34:12

MysqlJavaPython

2022-06-02 16:04:55

分庫表數據
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产精品免费一区二区三区四区 | 国产精品久久久久久久久久免费看 | 综合久久国产 | 视频一区二区三区中文字幕 | a级黄色片在线观看 | 亚洲永久精品国产 | 久色激情 | 亚洲国产成人在线视频 | 高清一区二区三区 | 色啪网| 99久热在线精品视频观看 | 91大神在线资源观看无广告 | 久久国产精品免费一区二区三区 | 视频一区二区中文字幕日韩 | 日日爱av| 久久宗合色 | 国产资源视频 | 国产在线精品一区二区三区 | 亚洲精品自拍视频 | 一区中文字幕 | www亚洲精品 | 亚洲精品18 | 在线免费观看黄网 | wwwxx在线观看 | 在线视频99 | 久久99久久久久 | 国产精品1区2区 | 久久青| 这里只有精品99re | av中文在线 | 久久久91精品国产一区二区三区 | 精品国产一区二区在线 | www国产亚洲精品久久网站 | 亚洲欧美日韩精品久久亚洲区 | 成人三级视频 | 欧美天堂| 国产激情综合五月久久 | 欧美一级免费片 | 日韩在线免费视频 | 这里只有精品99re | 精品三区 |