成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

HBase性能優化方法總結

數據庫 其他數據庫
本文主要是從HBase應用程序設計與開發的角度,總結幾種常用的性能優化方法。有關HBase系統配置級別的優化,這里涉及的不多,這部分可以參考:淘寶Ken Wu同學的博客。

 1. 表的設計

1.1 Pre-Creating Regions

默認情況下,在創建HBase表的時候會自動創建一個region分區,當導入數據的時候,所有的HBase客戶端都向這一個region寫數據,直到這個region足夠大了才進行切分。一種可以加快批量寫入速度的方法是通過預先創建一些空的regions,這樣當數據寫入HBase時,會按照region分區情況,在集群內做數據的負載均衡。

有關預分區,詳情參見:Table Creation: Pre-Creating Regions,下面是一個例子:

  1. public static boolean createTable(HBaseAdmin admin, HTableDescriptor table, byte[][] splits) 
  2. throws IOException { 
  3.   try { 
  4.     admin.createTable(table, splits); 
  5.     return true
  6.   } catch (TableExistsException e) { 
  7.     logger.info("table " + table.getNameAsString() + " already exists"); 
  8.     // the table already exists... 
  9.     return false
  10.   } 
  11.   
  12. public static byte[][] getHexSplits(String startKey, String endKey, int numRegions) { 
  13.   byte[][] splits = new byte[numRegions-1][]; 
  14.   BigInteger lowestKey = new BigInteger(startKey, 16); 
  15.   BigInteger highestKey = new BigInteger(endKey, 16); 
  16.   BigInteger range = highestKey.subtract(lowestKey); 
  17.   BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions)); 
  18.   lowestKey = lowestKey.add(regionIncrement); 
  19.   for(int i=0; i < numRegions-1;i++) { 
  20.     BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i))); 
  21.     byte[] b = String.format("%016x", key).getBytes(); 
  22.     splits[i] = b; 
  23.   } 
  24.   return splits; 

1.2 Row Key

HBase中row key用來檢索表中的記錄,支持以下三種方式:

  • 通過單個row key訪問:即按照某個row key鍵值進行get操作;
  • 通過row key的range進行scan:即通過設置startRowKey和endRowKey,在這個范圍內進行掃描;
  • 全表掃描:即直接掃描整張表中所有行記錄。

在HBase中,row key可以是任意字符串,***長度64KB,實際應用中一般為10~100bytes,存為byte[]字節數組,一般設計成定長的。

row key是按照字典序存儲,因此,設計row key時,要充分利用這個排序特點,將經常一起讀取的數據存儲到一塊,將最近可能會被訪問的數據放在一塊。

舉個例子:如果最近寫入HBase表中的數據是最可能被訪問的,可以考慮將時間戳作為row key的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE – timestamp作為row key,這樣能保證新寫入的數據在讀取時可以被快速命中。

1.3 Column Family

不要在一張表里定義太多的column family。目前Hbase并不能很好的處理超過2~3個column family的表。因為某個column family在flush的時候,它鄰近的column family也會因關聯效應被觸發flush,最終導致系統產生更多的I/O。感興趣的同學可以對自己的HBase集群進行實際測試,從得到的測試結果數據驗證一下。

1.4 In Memory

創建表的時候,可以通過HColumnDescriptor.setInMemory(true)將表放到RegionServer的緩存中,保證在讀取的時候被cache命中。

1.5 Max Version

創建表的時候,可以通過HColumnDescriptor.setMaxVersions(int maxVersions)設置表中數據的***版本,如果只需要保存***版本的數據,那么可以設置setMaxVersions(1)。

1.6 Time To Live

創建表的時候,可以通過HColumnDescriptor.setTimeToLive(int timeToLive)設置表中數據的存儲生命期,過期數據將自動被刪除,例如如果只需要存儲最近兩天的數據,那么可以設置setTimeToLive(2 * 24 * 60 * 60)。

1.7 Compact & Split

在HBase中,數據在更新時首先寫入WAL 日志(HLog)和內存(MemStore)中,MemStore中的數據是排序的,當MemStore累計到一定閾值時,就會創建一個新的MemStore,并且將老的MemStore添加到flush隊列,由單獨的線程flush到磁盤上,成為一個StoreFile。于此同時, 系統會在zookeeper中記錄一個redo point,表示這個時刻之前的變更已經持久化了(minor compact)。

StoreFile是只讀的,一旦創建后就不可以再修改。因此Hbase的更新其實是不斷追加的操作。當一個Store中的StoreFile達到一定的閾值后,就會進行一次合并(major compact),將對同一個key的修改合并到一起,形成一個大的StoreFile,當StoreFile的大小達到一定閾值后,又會對 StoreFile進行分割(split),等分為兩個StoreFile。

由于對表的更新是不斷追加的,處理讀請求時,需要訪問Store中全部的StoreFile和MemStore,將它們按照row key進行合并,由于StoreFile和MemStore都是經過排序的,并且StoreFile帶有內存中索引,通常合并過程還是比較快的。

實際應用中,可以考慮必要時手動進行major compact,將同一個row key的修改進行合并形成一個大的StoreFile。同時,可以將StoreFile設置大些,減少split的發生。

2. 寫表操作

2.1 多HTable并發寫

創建多個HTable客戶端用于寫操作,提高寫數據的吞吐量,一個例子:

  1. static final Configuration conf = HBaseConfiguration.create(); 
  2. static final String table_log_name = “user_log”; 
  3. wTableLog = new HTable[tableN]; 
  4. for (int i = 0; i < tableN; i++) { 
  5.     wTableLog[i] = new HTable(conf, table_log_name); 
  6.     wTableLog[i].setWriteBufferSize(5 * 1024 * 1024); //5MB 
  7.     wTableLog[i].setAutoFlush(false); 

2.2 HTable參數設置

2.2.1 Auto Flush

通過調用HTable.setAutoFlush(false)方法可以將HTable寫客戶端的自動flush關閉,這樣可以批量寫入數據到HBase,而不是有一條put就執行一次更新,只有當put填滿客戶端寫緩存時,才實際向HBase服務端發起寫請求。默認情況下auto flush是開啟的。

2.2.2 Write Buffer

通過調用HTable.setWriteBufferSize(writeBufferSize)方法可以設置HTable客戶端的寫buffer大小,如果新設置的buffer小于當前寫buffer中的數據時,buffer將會被flush到服務端。其中,writeBufferSize的單位是byte字節數,可以根據實際寫入數據量的多少來設置該值。

2.2.3 WAL Flag

在HBae中,客戶端向集群中的RegionServer提交數據時(Put/Delete操作),首先會先寫WAL(Write Ahead Log)日志(即HLog,一個RegionServer上的所有Region共享一個HLog),只有當WAL日志寫成功后,再接著寫MemStore,然后客戶端被通知提交數據成功;如果寫WAL日志失敗,客戶端則被通知提交失敗。這樣做的好處是可以做到RegionServer宕機后的數據恢復。

因此,對于相對不太重要的數據,可以在Put/Delete操作時,通過調用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函數,放棄寫WAL日志,從而提高數據寫入的性能。

值得注意的是:謹慎選擇關閉WAL日志,因為這樣的話,一旦RegionServer宕機,Put/Delete的數據將會無法根據WAL日志進行恢復。

2.3 批量寫

通過調用HTable.put(Put)方法可以將一個指定的row key記錄寫入HBase,同樣HBase提供了另一個方法:通過調用HTable.put(List<Put>)方法可以將指定的row key列表,批量寫入多行記錄,這樣做的好處是批量執行,只需要一次網絡I/O開銷,這對于對數據實時性要求高,網絡傳輸RTT高的情景下可能帶來明顯的性能提升。

2.4 多線程并發寫

在客戶端開啟多個HTable寫線程,每個寫線程負責一個HTable對象的flush操作,這樣結合定時flush和寫buffer(writeBufferSize),可以既保證在數據量小的時候,數據可以在較短時間內被flush(如1秒內),同時又保證在數據量大的時候,寫buffer一滿就及時進行flush。下面給個具體的例子:

  1. for (int i = 0; i < threadN; i++) { 
  2.     Thread th = new Thread() { 
  3.         public void run() { 
  4.             while (true) { 
  5.                 try { 
  6.                     sleep(1000); //1 second 
  7.                 } catch (InterruptedException e) { 
  8.                     e.printStackTrace(); 
  9.                 } 
  10.                                 synchronized (wTableLog[i]) { 
  11.                     try { 
  12.                         wTableLog[i].flushCommits(); 
  13.                     } catch (IOException e) { 
  14.                         e.printStackTrace(); 
  15.                     } 
  16.                 } 
  17.             } 
  18.                 } 
  19.     }; 
  20.     th.setDaemon(true); 
  21.     th.start(); 

3. 讀表操作

3.1 多HTable并發讀

創建多個HTable客戶端用于讀操作,提高讀數據的吞吐量,一個例子:

  1. static final Configuration conf = HBaseConfiguration.create(); 
  2. static final String table_log_name = “user_log”; 
  3. rTableLog = new HTable[tableN]; 
  4. for (int i = 0; i < tableN; i++) { 
  5.     rTableLog[i] = new HTable(conf, table_log_name); 
  6.     rTableLog[i].setScannerCaching(50); 

3.2 HTable參數設置

3.2.1 Scanner Caching

通過調用HTable.setScannerCaching(int scannerCaching)可以設置HBase scanner一次從服務端抓取的數據條數,默認情況下一次一條。通過將此值設置成一個合理的值,可以減少scan過程中next()的時間開銷,代價是scanner需要通過客戶端的內存來維持這些被cache的行記錄。

3.2.2 Scan Attribute Selection

scan時指定需要的Column Family,可以減少網絡傳輸數據量,否則默認scan操作會返回整行所有Column Family的數據。

3.2.3 Close ResultScanner

通過scan取完數據后,記得要關閉ResultScanner,否則RegionServer可能會出現問題(對應的Server資源無法釋放)。

3.3 批量讀

通過調用HTable.get(Get)方法可以根據一個指定的row key獲取一行記錄,同樣HBase提供了另一個方法:通過調用HTable.get(List)方法可以根據一個指定的row key列表,批量獲取多行記錄,這樣做的好處是批量執行,只需要一次網絡I/O開銷,這對于對數據實時性要求高而且網絡傳輸RTT高的情景下可能帶來明顯的性能提升。

3.4 多線程并發讀

在客戶端開啟多個HTable讀線程,每個讀線程負責通過HTable對象進行get操作。下面是一個多線程并發讀取HBase,獲取店鋪一天內各分鐘PV值的例子:

  1. public class DataReaderServer { 
  2.      //獲取店鋪一天內各分鐘PV值的入口函數 
  3.      public static ConcurrentHashMap getUnitMinutePV(long uid, long startStamp, long endStamp){ 
  4.          long min = startStamp; 
  5.          int count = (int)((endStamp - startStamp) / (60*1000)); 
  6.          List lst = new ArrayList(); 
  7.          for (int i = 0; i <= count; i++) { 
  8.             min = startStamp + i * 60 * 1000; 
  9.             lst.add(uid + "_" + min); 
  10.          } 
  11.          return parallelBatchMinutePV(lst); 
  12.      } 
  13.       //多線程并發查詢,獲取分鐘PV值 
  14. private static ConcurrentHashMap parallelBatchMinutePV(List lstKeys){ 
  15.         ConcurrentHashMap hashRet = new ConcurrentHashMap(); 
  16.         int parallel = 3; 
  17.         List<List<String>> lstBatchKeys  = null
  18.         if (lstKeys.size() < parallel ){ 
  19.             lstBatchKeys  = new ArrayList<List<String>>(1); 
  20.             lstBatchKeys.add(lstKeys); 
  21.         } 
  22.         else
  23.             lstBatchKeys  = new ArrayList<List<String>>(parallel); 
  24.             for(int i = 0; i < parallel; i++  ){ 
  25.                 List lst = new ArrayList(); 
  26.                 lstBatchKeys.add(lst); 
  27.             } 
  28.   
  29.             for(int i = 0 ; i < lstKeys.size() ; i ++ ){ 
  30.                 lstBatchKeys.get(i%parallel).add(lstKeys.get(i)); 
  31.             } 
  32.         } 
  33.   
  34.         List >> futures = new ArrayList >>(5); 
  35.   
  36.         ThreadFactoryBuilder builder = new ThreadFactoryBuilder(); 
  37.         builder.setNameFormat("ParallelBatchQuery"); 
  38.         ThreadFactory factory = builder.build(); 
  39.         ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(lstBatchKeys.size(), factory); 
  40.   
  41.         for(List keys : lstBatchKeys){ 
  42.             Callable< ConcurrentHashMap > callable = new BatchMinutePVCallable(keys); 
  43.             FutureTask< ConcurrentHashMap > future = (FutureTask< ConcurrentHashMap >) executor.submit(callable); 
  44.             futures.add(future); 
  45.         } 
  46.         executor.shutdown(); 
  47.   
  48.         // Wait for all the tasks to finish 
  49.         try { 
  50.           boolean stillRunning = !executor.awaitTermination( 
  51.               5000000, TimeUnit.MILLISECONDS); 
  52.           if (stillRunning) { 
  53.             try { 
  54.                 executor.shutdownNow(); 
  55.             } catch (Exception e) { 
  56.                 // TODO Auto-generated catch block 
  57.                 e.printStackTrace(); 
  58.             } 
  59.           } 
  60.         } catch (InterruptedException e) { 
  61.           try { 
  62.               Thread.currentThread().interrupt(); 
  63.           } catch (Exception e1) { 
  64.             // TODO Auto-generated catch block 
  65.             e1.printStackTrace(); 
  66.           } 
  67.         } 
  68.   
  69.         // Look for any exception 
  70.         for (Future f : futures) { 
  71.           try { 
  72.               if(f.get() != null
  73.               { 
  74.                   hashRet.putAll((ConcurrentHashMap)f.get()); 
  75.               } 
  76.           } catch (InterruptedException e) { 
  77.             try { 
  78.                  Thread.currentThread().interrupt(); 
  79.             } catch (Exception e1) { 
  80.                 // TODO Auto-generated catch block 
  81.                 e1.printStackTrace(); 
  82.             } 
  83.           } catch (ExecutionException e) { 
  84.             e.printStackTrace(); 
  85.           } 
  86.         } 
  87.   
  88.         return hashRet; 
  89.     } 
  90.      //一個線程批量查詢,獲取分鐘PV值 
  91.     protected static ConcurrentHashMap getBatchMinutePV(List lstKeys){ 
  92.         ConcurrentHashMap hashRet = null
  93.         List lstGet = new ArrayList(); 
  94.         String[] splitValue = null
  95.         for (String s : lstKeys) { 
  96.             splitValue = s.split("_"); 
  97.             long uid = Long.parseLong(splitValue[0]); 
  98.             long min = Long.parseLong(splitValue[1]); 
  99.             byte[] key = new byte[16]; 
  100.             Bytes.putLong(key, 0, uid); 
  101.             Bytes.putLong(key, 8, min); 
  102.             Get g = new Get(key); 
  103.             g.addFamily(fp); 
  104.             lstGet.add(g); 
  105.         } 
  106.         Result[] res = null
  107.         try { 
  108.             res = tableMinutePV[rand.nextInt(tableN)].get(lstGet); 
  109.         } catch (IOException e1) { 
  110.             logger.error("tableMinutePV exception, e=" + e1.getStackTrace()); 
  111.         } 
  112.   
  113.         if (res != null && res.length > 0) { 
  114.             hashRet = new ConcurrentHashMap(res.length); 
  115.             for (Result re : res) { 
  116.                 if (re != null && !re.isEmpty()) { 
  117.                     try { 
  118.                         byte[] key = re.getRow(); 
  119.                         byte[] value = re.getValue(fp, cp); 
  120.                         if (key != null && value != null) { 
  121.                             hashRet.put(String.valueOf(Bytes.toLong(key, 
  122.                                     Bytes.SIZEOF_LONG)), String.valueOf(Bytes 
  123.                                     .toLong(value))); 
  124.                         } 
  125.                     } catch (Exception e2) { 
  126.                         logger.error(e2.getStackTrace()); 
  127.                     } 
  128.                 } 
  129.             } 
  130.         } 
  131.   
  132.         return hashRet; 
  133.     } 
  134. //調用接口類,實現Callable接口 
  135. class BatchMinutePVCallable implements Callable>{ 
  136.      private List keys; 
  137.   
  138.      public BatchMinutePVCallable(List lstKeys ) { 
  139.          this.keys = lstKeys; 
  140.      } 
  141.   
  142.      public ConcurrentHashMap call() throws Exception { 
  143.          return DataReadServer.getBatchMinutePV(keys); 
  144.      } 

3.5 緩存查詢結果

對于頻繁查詢HBase的應用場景,可以考慮在應用程序中做緩存,當有新的查詢請求時,首先在緩存中查找,如果存在則直接返回,不再查詢HBase;否則對HBase發起讀請求查詢,然后在應用程序中將查詢結果緩存起來。至于緩存的替換策略,可以考慮LRU等常用的策略。

3.6 Blockcache

HBase上Regionserver的內存分為兩個部分,一部分作為Memstore,主要用來寫;另外一部分作為BlockCache,主要用于讀。

寫請求會先寫入Memstore,Regionserver會給每個region提供一個Memstore,當Memstore滿64MB以后,會啟動 flush刷新到磁盤。當Memstore的總大小超過限制時(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),會強行啟動flush進程,從***的Memstore開始flush直到低于限制。

讀請求先到Memstore中查數據,查不到就到BlockCache中查,再查不到就會到磁盤上讀,并把讀的結果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache達到上限(heapsize * hfile.block.cache.size * 0.85)后,會啟動淘汰機制,淘汰掉最老的一批數據。

一個Regionserver上有一個BlockCache和N個Memstore,它們的大小之和不能大于等于heapsize * 0.8,否則HBase不能啟動。默認BlockCache為0.2,而Memstore為0.4。對于注重讀響應時間的系統,可以將 BlockCache設大些,比如設置BlockCache=0.4,Memstore=0.39,以加大緩存的命中率。

有關BlockCache機制,請參考這里:HBase的Block cache,HBase的blockcache機制,hbase中的緩存的計算與使用。

4.數據計算

4.1 服務端計算

Coprocessor運行于HBase RegionServer服務端,各個Regions保持對與其相關的coprocessor實現類的引用,coprocessor類可以通過RegionServer上classpath中的本地jar或HDFS的classloader進行加載。

目前,已提供有幾種coprocessor:

Coprocessor:提供對于region管理的鉤子,例如region的open/close/split/flush/compact等;
RegionObserver:提供用于從客戶端監控表相關操作的鉤子,例如表的get/put/scan/delete等;
Endpoint:提供可以在region上執行任意函數的命令觸發器。一個使用例子是RegionServer端的列聚合,這里有代碼示例。
以上只是有關coprocessor的一些基本介紹,本人沒有對其實際使用的經驗,對它的可用性和性能數據不得而知。感興趣的同學可以嘗試一下,歡迎討論。

4.2 寫端計算

4.2.1 計數

HBase本身可以看作是一個可以水平擴展的Key-Value存儲系統,但是其本身的計算能力有限(Coprocessor可以提供一定的服務端計算),因此,使用HBase時,往往需要從寫端或者讀端進行計算,然后將最終的計算結果返回給調用者。舉兩個簡單的例子:

PV計算:通過在HBase寫端內存中,累加計數,維護PV值的更新,同時為了做到持久化,定期(如1秒)將PV計算結果同步到HBase中,這樣查詢端最多會有1秒鐘的延遲,能看到秒級延遲的PV結果。
分鐘PV計算:與上面提到的PV計算方法相結合,每分鐘將當前的累計PV值,按照rowkey + minute作為新的rowkey寫入HBase中,然后在查詢端通過scan得到當天各個分鐘以前的累計PV值,然后順次將前后兩分鐘的累計PV值相減,就得到了當前一分鐘內的PV值,從而最終也就得到當天各個分鐘內的PV值。

4.2.2 去重

對于UV的計算,就是個去重計算的例子。分兩種情況:

如果內存可以容納,那么可以在Hash表中維護所有已經存在的UV標識,每當新來一個標識時,通過快速查找Hash確定是否是一個新的UV,若是則UV值加1,否則UV值不變。另外,為了做到持久化或提供給查詢接口使用,可以定期(如1秒)將UV計算結果同步到HBase中。
如果內存不能容納,可以考慮采用Bloom Filter來實現,從而盡可能的減少內存的占用情況。除了UV的計算外,判斷URL是否存在也是個典型的應用場景。

4.3 讀端計算

如果對于響應時間要求比較苛刻的情況(如單次http請求要在毫秒級時間內返回),個人覺得讀端不宜做過多復雜的計算邏輯,盡量做到讀端功能單一化:即從HBase RegionServer讀到數據(scan或get方式)后,按照數據格式進行簡單的拼接,直接返回給前端使用。當然,如果對于響應時間要求一般,或者業務特點需要,也可以在讀端進行一些計算邏輯。

5.總結

作為一個Key-Value存儲系統,HBase并不是***的,它有自己獨特的地方。因此,基于它來做應用時,我們往往需要從多方面進行優化改進(表設計、讀表操作、寫表操作、數據計算等),有時甚至還需要從系統級對HBase進行配置調優,更甚至可以對HBase本身進行優化。這屬于不同的層次范疇。

總之,概括來講,對系統進行優化時,首先定位到影響你的程序運行性能的瓶頸之處,然后有的放矢進行針對行的優化。如果優化后滿足你的期望,那么就可以停止優化;否則繼續尋找新的瓶頸之處,開始新的優化,直到滿足性能要求。

以上就是從項目開發中總結的一點經驗,如有不對之處,歡迎大家不吝賜教。

原文鏈接:http://blog.linezing.com/2012/03/hbase-performance-optimization

【編輯推薦】

  1. 讓數據庫變快的10個建議
  2. 利用Java進行MySql數據庫的導入和導出
  3. 20個數據庫設計***實踐
  4. 超越MySQL 對流行數據庫進行分支
  5. 迎接大數據時代,高手較量數據庫遷移實戰方案

責任編輯:彭凡 來源: 量子恒道官方博客
相關推薦

2021-08-27 14:26:06

開發技能React

2019-02-25 07:07:38

技巧React 優化

2022-05-23 13:44:53

前端開發優化

2013-09-16 15:16:20

Android性能優化

2016-11-17 09:00:46

HBase優化策略

2017-03-01 20:53:56

HBase實踐

2016-12-19 10:00:00

React性能優化

2009-12-24 16:46:03

WPF性能優化

2019-12-10 08:10:35

LinuxCPU性能優化

2013-01-10 09:47:09

HBase性能優化

2022-09-13 12:56:28

前端優化

2017-12-04 12:29:15

前端JavaScript性能優化

2015-07-09 13:19:17

Ceph分布式存儲性能調優

2015-11-05 09:02:05

Java代碼性能優化

2021-07-16 23:01:03

SQL索引性能

2011-06-20 14:22:58

外鏈

2014-04-04 10:16:51

Nginx配置Nginx性能優化

2015-07-02 11:17:30

MySQLSlave延遲優化

2010-12-10 10:17:21

關系型數據庫

2021-07-26 18:23:23

SQL策略優化
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产三级日本三级 | 99精品在线| 美女福利视频 | 国产偷录叫床高潮录音 | 奇米视频777 | 免费成人高清 | 日韩成人免费视频 | 粉嫩粉嫩芽的虎白女18在线视频 | 精品一区二区三区中文字幕 | 91精品国产乱码久久久久久久久 | 久久久女女女女999久久 | 亚洲国产成人精 | 久久久久久成人 | 久久国产亚洲 | 亚洲精品乱码久久久久久黑人 | 8x国产精品视频一区二区 | 午夜精品网站 | 久久国产精品免费一区二区三区 | 国产精品久久久久久久久久软件 | 国产一区二区电影 | 美女一级毛片 | 日韩一区二区av | 国产精品久久久久国产a级 欧美日韩国产免费 | 91在线网站 | 日韩中文一区 | 久久国产精品一区二区三区 | 亚洲成人精品一区 | 黄色成人av | 国产一区不卡 | 亚洲欧美在线视频 | 国产99精品 | 亚洲精选久久 | 久久久久国产一区二区三区四区 | 国产激情在线 | 拍戏被cao翻了h承欢 | 亚洲成人福利 | 人人干天天干 | 久久久久久久久久久久久9999 | 99视频在线| 亚洲天堂色 | 欧美精品综合 |