成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

ChatGPT真能記住你的話嗎?DeepMind與開源大佬揭示LLM記憶之謎

人工智能 新聞
LLM有記憶能力嗎?有,也沒有。雖然ChatGPT聊天時好像可以記住你之前說的話,但實際上,模型在推理時記不住任何內容,而且它們在訓練時的記憶方式也不像我們想象的那么簡單。

Django框架的創始人之一、著名開發者Simon Willison最近發表了一篇博客文章,核心觀點是——雖然很多LLM看起來有記憶,但本質上是無狀態函數。

圖片

文章地址:https://simonwillison.net/2024/May/29/training-not-chatting/

Mozilla和FireFox的聯合創始人、JavaScript發明者Brendan Eich也在推特上稱贊這篇博客。

圖片

似乎有記憶的LLM

從計算機科學的角度來看,最好將LLM的推理過程視為無狀態函數調用——給定輸入文本,它會輸出接下來應該做什么。

然而使用過ChatGPT或者Gemini的人會明顯感覺到,LLM似乎可以記住之前的對話內容,好像模型有記憶能力。

然而這并不能歸功于模型本身。

事實上,用戶每次提出一個問題時,模型收到的提示都會包含之前所有的對話內容,這些提示就是我們經常說的「上下文」。


如果不提供上下文,LLM將完全不知道之前討論的內容。

所以,重新打開一個對話界面時,對LLM而言就是一個「從頭再來」的全新文本序列,完全獨立于你和其他用戶之前發生的對話。

從另一個角度看,這種「失憶」也有好處。比如,模型開始胡說八道,或者拒絕回答你的合理問題時,就可以試試重置對話窗口。也許在新的對話中,模型的輸出就能回到正軌。

這也是為什么LLM的上下文長度是一個重要的指標。如果對話過長、超出了上下文窗口,最早的那部分對話就會從提示中移除,看起來就像是模型的「遺忘」。

Andrej Karpathy將上下文窗口準確地形容為「LLM工作記憶的有限寶貴資源」。

但是,有很多方法可以為LLM外置記憶能力,來滿足產品使用的需求。

將之前的對話作為提示,和當前問題一起輸入給LLM是最直接的方法,但這依舊是「短期記憶」,而且擴展模型的上下文長度成本很高。

GPT-4o免費版支持8k上下文,付費版可以達到128k,已經比之前的32k提升了3倍,但仍然無法保存單個網頁的原始HTML。

也可以遞歸地總結之前的對話內容,將歷史對話摘要當作LLM提示。雖然可能會丟失細節,但相比直接截斷的方法,更高程度上保留了內容的完整性。

另一種方法是外接矢量數據庫,為LLM添加「長期記憶」。

在進行對話時,先從數據庫中檢索相關內容,再將其添加進上下文窗口,也就是檢索增強生成(RAG)。

但如果數據庫內容過多,檢索過程很可能增加模型的響應延遲。

實際開發中,檢索、摘要這兩種手段常常搭配使用,以求在成本和性能、長期和短期記憶之間取得平衡。

推理無法記憶,但訓練可以

LLM的推理過程雖然等效于「無狀態函數」,但訓練過程并不是這樣,否則它也無法從語料中學習到任何知識。

但我們對于LLM記憶的分歧之處在于,它到底是用「機械」的方式復制了訓練數據,還是更像人類的學習過程,用理解、概括的方式將數據內容集成在參數中。

DeepMind近期發表的一篇論文或許可以從另一個角度揭示這個問題。

圖片

論文地址:https://arxiv.org/abs/2404.15146

他們使用與訓練語料相似的prompt攻擊LLM,看它能否逐字逐句地輸出訓練數據。

但Falcon、Llama、Mistral這種常用的半開放LLM,以及GPT系列都沒有公開訓練數據,要怎么判斷模型的輸出是否包括在訓練集中?

論文使用了一種巧妙的方法進行判斷:首先,從RefinedWeb、RedPajama、Pile等常用的LLM預訓練數據集中選取了9TB的文本作為輔助數據集。

如果模型輸出的文本序列足夠長、信息熵又足夠大,而且還和輔助數據集內容重合,那么基本可以斷定模型在訓練時見過這條數據。

這樣的判斷方法會存在假陰性,因為輔助數據集不可能涵蓋所有模型的訓練數據,但幾乎沒有假陽性,因此得到的結果可以作為模型「復現」訓練內容的比例下界。

結果發現,所有的模型都能逐字逐句地輸出訓練數據,只是概率有所差異。

從結果可以發現,參數量越大的模型似乎記住的內容越多,越有可能在輸出中讓訓練數據回流。

不同系列的模型之間差異比較顯著。比如7B參數的Mistral相比Falcon,有將近10倍的概率原樣吐出訓練數據。

但可能的原因有很多,既能解釋為模型記憶能力的差距,也能歸因于為輔助數據集的偏差。

有趣的是,如果prompt的要求是一直持續輸出某個單詞,有些單詞更有可能觸發模型吐出訓練數據。


最有效的一個單詞是「company」

作者指出,從安全的角度來看,這說明對齊過程沒有完全模糊模型的記憶,這些可提取的訓練數據會帶來版權糾紛與隱私泄露問題。

但從另一個角度來看,這證明,一定比例的訓練數據被無損壓縮而且存儲在了模型參數中。模型的記憶方式,果然是有些「機械化」的成分。

更進一步思考,如果改進LLM的記憶方式,讓訓練數據以更概括、更抽象的方式存儲在參數中,能否帶來模型能力的持續提升?

責任編輯:張燕妮 來源: 新智元
相關推薦

2022-12-08 08:16:59

ChatGPT開源商業化

2024-07-12 14:07:04

2010-08-16 10:48:47

2012-07-05 09:33:32

WPSOpenOffice開源

2023-05-18 16:09:06

2024-07-03 09:38:35

LLM人工智能

2025-06-27 08:56:51

2024-12-12 08:42:25

2023-06-30 09:00:00

Falcon LLM開源

2016-08-04 16:30:49

華為

2024-07-08 09:00:00

2025-04-23 08:00:00

Wi-Fi有線網絡網線

2025-05-16 10:17:54

2024-07-05 15:06:00

2025-06-23 09:26:24

2022-09-29 23:57:54

機器學習人工智能統計學

2011-12-22 10:49:55

PDU電耗

2024-11-18 10:25:00

AI模型

2017-08-07 15:43:42

2023-02-27 10:45:16

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产a区| 精品在线一区二区三区 | 99久久99| 国产精品不卡 | 成人在线免费观看 | 成人免费观看男女羞羞视频 | 日韩字幕 | 成人午夜黄色 | 国产一二区视频 | 成人午夜视频在线观看 | 国产精品久久久久久久午夜片 | 国产一区二区av | 午夜天堂精品久久久久 | 成人免费一区二区三区视频网站 | 人人澡人人爱 | 亚洲国产成人久久综合一区,久久久国产99 | 成人日韩 | 伊人免费视频二 | 久久久久国产一区二区三区 | 狠狠亚洲 | 天天操综合网站 | 欧美一级免费黄色片 | 国产精品中文 | 玖玖视频 | 国产一二三区免费视频 | 亚洲a在线视频 | 久久蜜桃精品 | 欧美一区 | www.日日干| 7777在线| 97超级碰碰| 久久精品成人 | 欧美色综合一区二区三区 | 国产精品永久免费视频 | 亚洲 欧美 另类 综合 偷拍 | 日韩在线免费看 | 久久精品亚洲精品国产欧美 | 精品欧美久久 | 亚洲视频在线观看一区二区三区 | 超碰在线免费 | 99精品视频在线观看 |