成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

機器學習 | PyTorch簡明教程上篇

人工智能 機器學習
前面幾篇文章介紹了特征歸一化和張量,接下來開始寫兩篇PyTorch簡明教程,主要介紹PyTorch簡單實踐。

前面幾篇文章介紹了特征歸一化和張量,接下來開始寫兩篇PyTorch簡明教程,主要介紹PyTorch簡單實踐。

1、四則運算

import torch

a = torch.tensor([2, 3, 4])
b = torch.tensor([3, 4, 5])
print("a + b: ", (a + b).numpy())
print("a - b: ", (a - b).numpy())
print("a * b: ", (a * b).numpy())
print("a / b: ", (a / b).numpy())

加減乘除就不用多解釋了,輸出為:

a + b:  [5 7 9]
a - b:  [-1 -1 -1]
a * b:  [ 6 12 20]
a / b:  [0.6666667 0.75      0.8      ]

2、線性回歸

線性回歸是找到一條直線盡可能接近已知點,如圖:

圖1圖1

import torch
from torch import optim

def build_model1():
    return torch.nn.Sequential(
        torch.nn.Linear(1, 1, bias=False)
    )

def build_model2():
    model = torch.nn.Sequential()
    model.add_module("linear", torch.nn.Linear(1, 1, bias=False))
    return model

def train(model, loss, optimizer, x, y):
    model.train()
    optimizer.zero_grad()
    fx = model.forward(x.view(len(x), 1)).squeeze()
    output = loss.forward(fx, y)
    output.backward()
    optimizer.step()
    return output.item()

def main():
    torch.manual_seed(42)
    X = torch.linspace(-1, 1, 101, requires_grad=False)
    Y = 2 * X + torch.randn(X.size()) * 0.33
    print("X: ", X.numpy(), ", Y: ", Y.numpy())
    model = build_model1()
    loss = torch.nn.MSELoss(reductinotallow='mean')
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    batch_size = 10

    for i in range(100):
        cost = 0.
        num_batches = len(X) // batch_size
        for k in range(num_batches):
            start, end = k * batch_size, (k + 1) * batch_size
            cost += train(model, loss, optimizer, X[start:end], Y[start:end])
        print("Epoch = %d, cost = %s" % (i + 1, cost / num_batches))

    w = next(model.parameters()).data
    print("w = %.2f" % w.numpy())

if __name__ == "__main__":
    main()

(1)先從main函數開始,torch.manual_seed(42)用于設置隨機數生成器的種子,以確保在每次運行時生成的隨機數序列相同,該函數接受一個整數參數作為種子,可以在訓練神經網絡等需要隨機數的場景中使用,以確保結果的可重復性;

(2)torch.linspace(-1, 1, 101, requires_grad=False)用于在指定的區間內生成一組等間隔的數值,該函數接受三個參數:起始值、終止值和元素個數,返回一個張量,其中包含了指定個數的等間隔數值;

(3)build_model1內部實現:

  • torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))中使用nn.Sequential類的構造函數,將線性層作為參數傳遞給它,然后返回一個包含該線性層的神經網絡模型;
  • build_model2和build_model1功能一樣,使用add_module()方法向其中添加了一個名為linear的子模塊;

(4)torch.nn.MSELoss(reductinotallow='mean')定義損失函數;

(5)optim.SGD(model.parameters(), lr=0.01, momentum=0.9)實現隨機梯度下降(Stochastic Gradient Descent,SGD)優化算法;

(6)通過batch_size將訓練集拆分,循環100次;

(7)接下來是訓練函數train,用于訓練一個神經網絡模型,具體來說,該函數接受以下參數:

  • model:神經網絡模型,通常是一個繼承自nn.Module的類的實例;
  • loss:損失函數,用于計算模型的預測值與真實值之間的差異;
  • optimizer:優化器,用于更新模型的參數;
  • x:輸入數據,是一個torch.Tensor類型的張量;
  • y:目標數據,是一個torch.Tensor類型的張量;

(8)train是PyTorch訓練步驟的通用方法,步驟如下:

  • 將模型設置為訓練模式,即啟用dropout和batch normalization等訓練時使用的特殊操作;
  • 將優化器的梯度緩存清零,以便進行新一輪的梯度計算;
  • 將輸入數據傳遞給模型,計算模型的預測值,并將預測值與目標數據傳遞給損失函數,計算損失值;
  • 對損失值進行反向傳播,計算模型參數的梯度;
  • 使用優化器更新模型參數,以最小化損失值;
  • 返回損失值的標量值;

(9)print("Epoch = %d, cost = %s" % (i + 1, cost / num_batches))最后打印當前訓練的輪次和損失值,上述的代碼輸出如下:

...
Epoch = 95, cost = 0.10514946877956391
Epoch = 96, cost = 0.10514946877956391
Epoch = 97, cost = 0.10514946877956391
Epoch = 98, cost = 0.10514946877956391
Epoch = 99, cost = 0.10514946877956391
Epoch = 100, cost = 0.10514946877956391
w = 1.98

3、邏輯回歸

邏輯回歸即用一根曲線近似表示一堆離散點的軌跡,如圖:

圖2圖2

import numpy as np
import torch
from torch import optim
from data_util import load_mnist

def build_model(input_dim, output_dim):
    return torch.nn.Sequential(
        torch.nn.Linear(
            input_dim, output_dim, bias=False)
    )

def train(model, loss, optimizer, x_val, y_val):
    model.train()
    optimizer.zero_grad()
    fx = model.forward(x_val)
    output = loss.forward(fx, y_val)
    output.backward()
    optimizer.step()
    return output.item()

def predict(model, x_val):
    model.eval()
    output = model.forward(x_val)
    return output.data.numpy().argmax(axis=1)

def main():
    torch.manual_seed(42)
    trX, teX, trY, teY = load_mnist(notallow=False)
    trX = torch.from_numpy(trX).float()
    teX = torch.from_numpy(teX).float()
    trY = torch.tensor(trY)

    n_examples, n_features = trX.size()
    n_classes = 10
    model = build_model(n_features, n_classes)
    loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    batch_size = 100

    for i in range(100):
        cost = 0.
        num_batches = n_examples // batch_size
        for k in range(num_batches):
            start, end = k * batch_size, (k + 1) * batch_size
            cost += train(model, loss, optimizer,
                          trX[start:end], trY[start:end])
        predY = predict(model, teX)
        print("Epoch %d, cost = %f, acc = %.2f%%"
              % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))


if __name__ == "__main__":
    main()

(1)先從main函數開始,torch.manual_seed(42)上面有介紹,在此略過;

(2)load_mnist是自己實現下載mnist數據集,返回trX和teX是輸入數據,trY和teY是標簽數據;

(3)build_model內部實現:torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False))用于構建一個包含一個線性層的神經網絡模型,模型的輸入特征數量為input_dim,輸出特征數量為output_dim,且該線性層沒有偏置項,其中n_classes=10表示輸出10個分類;

(4)其他的步驟就是定義損失函數,梯度下降優化器,通過batch_size將訓練集拆分,循環100次進行train;

(5)optim.SGD(model.parameters(), lr=0.01, momentum=0.9)實現隨機梯度下降(Stochastic Gradient Descent,SGD)優化算法;

(6)每一輪訓練完成后,執行predict,該函數接受兩個參數model(訓練好的模型)和teX(需要預測的數據),步驟如下:

  • model.eval()模型設置為評估模式,這意味著模型將不會進行訓練,而是僅用于推理;
  • 將output轉換為NumPy數組,并使用argmax()方法獲取每個樣本的預測類別;

(7)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印當前訓練的輪次,損失值和acc,上述的代碼輸出如下(執行很快,但是準確率偏低):

...
Epoch 91, cost = 0.252863, acc = 92.52%
Epoch 92, cost = 0.252717, acc = 92.51%
Epoch 93, cost = 0.252573, acc = 92.50%
Epoch 94, cost = 0.252431, acc = 92.50%
Epoch 95, cost = 0.252291, acc = 92.52%
Epoch 96, cost = 0.252153, acc = 92.52%
Epoch 97, cost = 0.252016, acc = 92.51%
Epoch 98, cost = 0.251882, acc = 92.51%
Epoch 99, cost = 0.251749, acc = 92.51%
Epoch 100, cost = 0.251617, acc = 92.51%

4、神經網絡

一個經典的LeNet網絡,用于對字符進行分類,如圖:

圖3圖3

  • 定義一個多層的神經網絡
  • 對數據集的預處理并準備作為網絡的輸入
  • 將數據輸入到網絡
  • 計算網絡的損失
  • 反向傳播,計算梯度
import numpy as np
import torch
from torch import optim
from data_util import load_mnist

def build_model(input_dim, output_dim):
    return torch.nn.Sequential(
        torch.nn.Linear(input_dim, 512, bias=False),
        torch.nn.Sigmoid(),
        torch.nn.Linear(512, output_dim, bias=False)
    )

def train(model, loss, optimizer, x_val, y_val):
    model.train()
    optimizer.zero_grad()
    fx = model.forward(x_val)
    output = loss.forward(fx, y_val)
    output.backward()
    optimizer.step()
    return output.item()

def predict(model, x_val):
    model.eval()
    output = model.forward(x_val)
    return output.data.numpy().argmax(axis=1)

def main():
    torch.manual_seed(42)
    trX, teX, trY, teY = load_mnist(notallow=False)
    trX = torch.from_numpy(trX).float()
    teX = torch.from_numpy(teX).float()
    trY = torch.tensor(trY)

    n_examples, n_features = trX.size()
    n_classes = 10
    model = build_model(n_features, n_classes)
    loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    batch_size = 100

    for i in range(100):
        cost = 0.
        num_batches = n_examples // batch_size
        for k in range(num_batches):
            start, end = k * batch_size, (k + 1) * batch_size
            cost += train(model, loss, optimizer,
                          trX[start:end], trY[start:end])
        predY = predict(model, teX)
        print("Epoch %d, cost = %f, acc = %.2f%%"
              % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))

if __name__ == "__main__":
    main()

(1)以上這段神經網絡的代碼與邏輯回歸沒有太多的差異,區別的地方是build_model,這里是構建一個包含兩個線性層和一個Sigmoid激活函數的神經網絡模型,該模型包含一個輸入特征數量為input_dim,輸出特征數量為output_dim的線性層,一個Sigmoid激活函數,以及一個輸入特征數量為512,輸出特征數量為output_dim的線性層;

(2)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印當前訓練的輪次,損失值和acc,上述的代碼輸入如下(執行時間比邏輯回歸要長,但是準確率要高很多):

...
Epoch 91, cost = 0.054484, acc = 97.58%
Epoch 92, cost = 0.053753, acc = 97.56%
Epoch 93, cost = 0.053036, acc = 97.60%
Epoch 94, cost = 0.052332, acc = 97.61%
Epoch 95, cost = 0.051641, acc = 97.63%
Epoch 96, cost = 0.050964, acc = 97.66%
Epoch 97, cost = 0.050298, acc = 97.66%
Epoch 98, cost = 0.049645, acc = 97.67%
Epoch 99, cost = 0.049003, acc = 97.67%
Epoch 100, cost = 0.048373, acc = 97.68%


責任編輯:華軒 來源: 周末程序猿
相關推薦

2023-11-02 14:30:25

機器學習

2013-12-03 13:05:30

Lua腳本語言

2014-06-20 10:51:35

Linux LVM邏輯卷

2011-06-03 08:49:54

Java

2023-10-20 14:08:35

digDNS

2010-05-26 10:42:20

SVN1.5配置

2021-01-05 09:55:46

TmateLinux命令

2009-08-06 17:45:08

C# Webservi

2010-12-15 12:48:26

VirtualBox

2009-09-02 17:38:19

C#開發GIS

2011-08-17 09:55:45

Objective-CCategory

2021-05-08 09:02:48

KubeBuilderOperatork8s

2011-08-17 10:00:12

Objective-CProperty

2021-05-11 09:31:31

kustomizeoperator kubernetes

2010-05-25 16:11:25

Git-SVN

2010-01-26 08:25:06

F#語法F#教程

2009-07-03 13:45:48

JSP簡明教程組件為中心

2021-03-03 12:55:30

Python列表推導式代碼

2025-06-05 01:40:00

2014-03-21 12:48:08

Java8Java8教程
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 亚洲一区电影 | 国产高清在线精品 | 成人妇女免费播放久久久 | 成人在线中文字幕 | 亚洲www啪成人一区二区麻豆 | 久久久精品网站 | 91久久久精品国产一区二区蜜臀 | 激情五月综合 | 国产欧美日韩一区 | 成人不卡视频 | 天天操天天干天天爽 | 亚洲精品国产成人 | 日韩欧美一区二区三区 | 国产日产精品一区二区三区四区 | 91高清视频在线观看 | 国产精品免费播放 | 婷婷色在线播放 | 日本午夜免费福利视频 | 在线2区 | 韩国久久精品 | 人人人人爽 | 99re国产视频 | 成人在线网 | 欧美中文字幕一区二区三区亚洲 | 日韩精品一区二区三区久久 | 久久久精品一区二区三区 | 精品久久久久一区二区国产 | 狠狠亚洲 | 69堂永久69tangcom | 日韩av中文| 午夜极品| 欧美激情五月 | 九九九久久国产免费 | 美女人人操 | 2021天天干夜夜爽 | 一区二区在线免费播放 | 中文字幕在线视频免费视频 | 久久丝袜视频 | 国产精品久久久久久久久久久免费看 | 久久精品亚洲欧美日韩精品中文字幕 | 欧美日韩在线一区二区三区 |