分析Linux內(nèi)核中的SPI驅(qū)動(dòng)源碼
本文將對(duì)Linux內(nèi)核中的SPI驅(qū)動(dòng)源碼進(jìn)行分析,包括SPI驅(qū)動(dòng)框架的基本結(jié)構(gòu)、各文件的作用、重要的數(shù)據(jù)結(jié)構(gòu)和函數(shù)等。
SPI(Serial Peripheral Interface)是一種串行通信接口,常常用于與數(shù)字外設(shè)進(jìn)行通信,如傳感器、存儲(chǔ)器、網(wǎng)卡等。Linux內(nèi)核提供了SPI驅(qū)動(dòng)框架,用于向上層應(yīng)用程序提供SPI接口。本文將對(duì)該框架進(jìn)行深入分析。
一、SPI驅(qū)動(dòng)框架的基本結(jié)構(gòu)
在Linux內(nèi)核中,SPI驅(qū)動(dòng)框架的代碼位于/drivers/spi目錄下。該目錄下的源文件主要包括以下幾個(gè):
- spi.c:SPI總線設(shè)備驅(qū)動(dòng)程序。
- spi-bitbang.c:位壓縮SPI驅(qū)動(dòng)程序。
- spi-dw-dma.c:SPI DMA驅(qū)動(dòng)程序。
- spi-dw-mmio.c:SPI MMIO驅(qū)動(dòng)程序。
- spi-fsl-dspi.c:FSL DSPI驅(qū)動(dòng)程序。
- spi-imx.c:i.MX SPI驅(qū)動(dòng)程序。
- spi-pl022.c:ARM PrimeCell PL022 SPI驅(qū)動(dòng)程序。
- spi-s3c24xx.c:Samsung S3C24xx SPI驅(qū)動(dòng)程序。
- spi-tegra20-sflash.c:Nvidia SPI Flash驅(qū)動(dòng)程序。
- spi-ti-qspi.c:TI Quad SPI驅(qū)動(dòng)程序。
這些驅(qū)動(dòng)程序分別對(duì)應(yīng)不同的SPI控制器。其中,spi.c是SPI驅(qū)動(dòng)的核心文件,提供了SPI驅(qū)動(dòng)框架的基本結(jié)構(gòu)和主要函數(shù)。
二、spi.c的結(jié)構(gòu)和作用
1、SPI驅(qū)動(dòng)框架的初始化
SPI驅(qū)動(dòng)框架的初始化主要在spi_init()函數(shù)中完成。該函數(shù)首先調(diào)用spi_bus_type_init()函數(shù),注冊(cè)SPI設(shè)備總線,然后向/sys/class下的spi_master目錄中創(chuàng)建spi設(shè)備目錄,最后調(diào)用probe_master()函數(shù),搜索當(dāng)前系統(tǒng)中的SPI設(shè)備并添加到bus層中。該函數(shù)的代碼如下:
static int __init spi_init(void)
{
int status;
status = spi_bus_type_init();
if (status)
goto out;
status = class_register(&spi_master_class);
if (status)
goto bus_unregister;
status = spi_proc_init();
if (status)
goto class_unregister;
status = spi_gpio_register_board_info(NULL, 0);
if (status)
goto proc_cleanup;
status = spi_read_configfile();
if (status)
goto board_cleanup;
status = spi_master_probe_devices();
if (status)
goto board_cleanup;
printk(KERN_INFO "%s\n", spi_revision);
return 0;
board_cleanup:
spi_board_cleanup();
proc_cleanup:
spi_proc_cleanup();
class_unregister:
class_unregister(&spi_master_class);
bus_unregister:
spi_bus_type_exit();
out:
return status;
}
2、SPI總線設(shè)備的添加和刪除
當(dāng)SPI總線設(shè)備(spi_master)被發(fā)現(xiàn)并添加到bus層時(shí),會(huì)自動(dòng)調(diào)用spi_master_add()函數(shù),該函數(shù)會(huì)為SPI總線設(shè)備創(chuàng)建一個(gè)spi_master結(jié)構(gòu)體,并將其添加到bus層中。
static int spi_master_add(struct spi_master *master)
{
struct device *dev = master->dev.parent;
struct spi_controller *ctlr = master->controller;
mutex_lock(&spi_mutex);
/*
? Implementation restriction: each SPI MASTER talks with other
? devices at constant signal levels, which don't change once
? operation starts. We don't provide any synchronization
? primitives that would be necessary for anything else.
*/
if (master->num_chipselect)
dev_warn(dev, "num_chipselect should == 1 when !is_slave\n");
if (!ctlr) {
ctlr = kzalloc(sizeof(struct spi_controller), GFP_KERNEL);
if (!ctlr) {
mutex_unlock(&spi_mutex);
return -ENOMEM;
}
ctlr->master = master;
master->controller = ctlr;
master->bits_per_word_mask = 0xFFFF;
if (!spi_controller_is_slave(master)) {
ctlr->max_speed_hz = spi_max_speed_hz(&ctlr->dev, master);
ctlr->setup = spi_master_setup;
ctlr->transfer_one = spi_transfer_one;
} else {
ctlr->max_speed_hz = master->max_speed_hz;
ctlr->setup = spi_slave_setup;
ctlr->transfer_one = spi_transfer_one_slave;
}
ctlr->bits_per_word_mask = master->bits_per_word_mask;
ctlr->flags = 0;
ctlr->mode_bits = master->mode_bits;
if (spi_controller_is_slave(master)) {
ctlr->mode_bits = 0;
ctlr->flags = SPI_CONTROLLER_SLAVE;
ctlr->bus_num = spi_slave_controller_id++;
idr_init(&ctlr->idr);
} else {
ctlr->mode_bits &= ctlr->controller_ops->get_mode_bits;
ctlr->flags |= SPI_CONTROLLER_MASTER;
ctlr->bus_num = spi_master_controller_id++;
}
dev_set_drvdata(dev, master);
dev_info(dev, "registered, %s%s%s%s%s\n",
ctlr->flags & SPI_CONTROLLER_MASTER ? "master" : "",
ctlr->flags & SPI_CONTROLLER_SLAVE ? "slave" : "",
ctlr->flags & SPI_CONTROLLER_CS_WORD ? "cs-high" : "",
ctlr->flags & SPI_CONTROLLER_NEEDS_POLL ? ", polling" : "",
ctlr->mode_bits ? ", mode " : "");
list_add_tail(&ctlr->list, &ctlr_list);
}
mutex_unlock(&spi_mutex);
return 0;
}
當(dāng)SPI總線設(shè)備從bus層中刪除時(shí),會(huì)自動(dòng)調(diào)用spi_master_del()函數(shù),該函數(shù)會(huì)刪除spi_master結(jié)構(gòu)體并釋放相關(guān)資源。
static int spi_master_del(struct spi_master *master)
{
int my_bus_num = master->controller->bus_num;
mutex_lock(&spi_mutex);
if (my_bus_num < 0) { /* not yet attached */
mutex_unlock(&spi_mutex);
return -EINVAL;
}
if (!spi_controller_is_slave(master)) {
if (spi_master_get(master)) {
mutex_unlock(&spi_mutex);
return -EINVAL;
}
}
dev_info(&master->dev, "removed\n");
spi_controller_cleanup(master->controller);
kfree(master->controller);
return 0;
}
三、重要的數(shù)據(jù)結(jié)構(gòu)和函數(shù)
1、spi_device
spi_device結(jié)構(gòu)體表示一個(gè)SPI設(shè)備,包含了設(shè)備的名稱、片選信號(hào)、總線速率、數(shù)據(jù)位數(shù)、SPI傳輸設(shè)置等信息。該結(jié)構(gòu)體被定義在include/linux/spi/spi.h頭文件中,其定義如下:
struct spi_device {
struct device dev;
spinlock_t regs_lock;
const struct spi_device *next;
u32 max_speed_hz;
u8 chip_select;
u8 mode;
u8 bit_order;
u16 flags;
u32 irq;
struct mutex io_mutex;
/* RT signal stuff */
struct rt_mutex rt;
struct spi_controller *controller;
};
spi_transfer結(jié)構(gòu)體表示一次SPI傳輸,包含了傳輸?shù)木彌_區(qū)、字節(jié)長(zhǎng)度、傳輸設(shè)置等信息以及一個(gè)回調(diào)函數(shù),用于在傳輸完成時(shí)通知上層應(yīng)用程序。該結(jié)構(gòu)體被定義在include/linux/spi/spi.h頭文件中,其定義如下:
struct spi_transfer {
const void *tx_buf;
void *rx_buf;
unsigned len;
u32 speed_hz;
u16 delay_usecs;
u8 bits_per_word;
/* Used internally, by spi_sync() and the SPI core code */
u8 cs_change:1;
u8 do_read:1;
u8 tx_nbits:6; /* internal, for packing only */
u8 rx_nbits:6; /* internal, for packing only */
u16 rdy_for_tx:1;
u16 rdy_for_rx:1;
u16 cs_change_delay:14;
u16 large_buf:1;
u8 *tx_buf_wr;
u8 *rx_buf_wr;
void *private_data;
void (*complete)(void *private_data);
};
3、spi_sync()
spi_sync()函數(shù)用于同步傳輸數(shù)據(jù),該函數(shù)會(huì)等待傳輸完成并返回傳輸結(jié)果。該函數(shù)的代碼如下:
int spi_sync(struct spi_device *spi, struct spi_transfer *t)
{
DECLARE_COMPLETION_ONSTACK(done);
int status;
t->complete = spi_complete;
t->private_data = &done;
t->rdy_for_tx = t->rdy_for_rx = 0;
t->cs_change = spi->controller->cs_gpiod ? 1 : 0;
status = spi_async(spi, t);
if (status == 0) {
wait_for_completion(&done);
status = t->status;
if (status == -ETIMEDOUT)
status = -EIO;
}
return status;
}
4、spi_async()
spi_async()函數(shù)用于異步傳輸數(shù)據(jù),該函數(shù)會(huì)啟動(dòng)SPI傳輸,并立即返回,不等待傳輸完成。該函數(shù)的代碼如下:
int spi_async(struct spi_device *spi, struct spi_transfer *t)
{
struct spi_message msg;
int status;
memset(&msg, 0, sizeof(msg));
msg.spi = spi;
msg.complete = spi_complete;
msg.context = t;
msg.state = NULL;
msg.is_dma_mapped = false;
spi_prepare_message(&msg, t);
status = spi_async_locked(spi_get_parent_master(spi), &msg);
if (status == -EBUSY)
return -EAGAIN;
t->status = status;
if (msg.is_dma_mapped)
dma_unmap_sg(&spi->dev, msg.sgbuf, msg.nents, msg.direction);
if (msg.is_dma_mapped && msg.context && spi_need_dma_clean_up_on_error()) {
struct spi_controller *ctlr = spi->controller;
struct spi_transfer *xfer = msg.contexte
if (xfer->tx_buf && ctlr->dma_tx && ctlr->dma_tx->device->dev) {
dma_sync_sg_for_device(ctlr->dma_tx->device->dev,
msg.sgbuf,
msg.nents,
(ctlr->dma_tx_dir == DMA_MEM_TO_DEV) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
dma_unmap_sg(ctlr->dma_tx->device->dev,
msg.sgbuf,
msg.nents,
ctlr->dma_tx_dir);
}
if (xfer->rx_buf && ctlr->dma_rx && ctlr->dma_rx->device->dev) {
dma_sync_sg_for_device(ctlr->dma_rx->device->dev,
msg.sgbuf,
msg.nents,
(ctlr->dma_rx_dir == DMA_MEM_TO_DEV) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
dma_unmap_sg(ctlr->dma_rx->device->dev,
msg.sgbuf,
msg.nents,
ctlr->dma_rx_dir);
}
}
if (status == -EINPROGRESS || status == -EBUSY) {
status = 0;
} else if (unlikely(status)) {
dev_err(spi->dev.parent, "%s: spi_sync failed with status %d\n",
func, status);
}
return status;
}
四、總結(jié)
本文分析了Linux內(nèi)核中的SPI驅(qū)動(dòng)源碼,介紹了SPI驅(qū)動(dòng)框架的基本結(jié)構(gòu)、spi.c的結(jié)構(gòu)和作用以及SPI驅(qū)動(dòng)中的重要數(shù)據(jù)結(jié)構(gòu)和函數(shù)。通讀本文后,讀者應(yīng)該了解了SPI設(shè)備的工作原理和Linux內(nèi)核中提供的SPI驅(qū)動(dòng)框架的實(shí)現(xiàn)方式,理解了相關(guān)代碼的運(yùn)行過(guò)程和涉及的系統(tǒng)調(diào)用,有助于讀者熟練掌握SPI驅(qū)動(dòng)的編寫技巧。