一文讀懂云計算、大數據和AI間的關系和區別
相信大家都聽說過云計算、大數據和人工智能,并且它們之間好像互相有關系:一般談云計算的時候會提到大數據、大數據的時候會提人工智能、談人工智能的時候會提云計算……三者之間相輔相成又不可分割,那么這三者之間到底是怎么一回事呢,今天小編就來講講。
云計算
1、云計算最初的目標
云計算最初的目標是對資源的管理,管理的主要是計算資源、網絡資源、存儲資源三個方面。管理的目標就是要達到空間靈活性和時間靈活性,即我們常說的云計算的彈性。而解決這個彈性的問題,經歷了漫長時間的發展。
時間靈活性:想什么時候要就什么時候要,需要的時候一點就出來了;
空間靈活性:想要多少就有多少。需要一個太很小的電腦,可以滿足;需要一個特別大的空間例如云盤,云盤給每個人分配的空間動不動就很大很大,隨時上傳隨時有空間,永遠用不完,也是可以滿足的。
然后人們發明了一個叫做調度(Scheduler)的算法。通俗一點說,就是有一個調度中心,幾千臺機器都在一個池子里面,無論用戶需要多少CPU、內存、硬盤的虛擬電腦,調度中心會自動在大池子里面找一個能夠滿足用戶需求的地方,把虛擬電腦啟動起來做好配置,用戶就直接能用了。這個階段我們稱為池化或者云化。到了這個階段,才可以稱為云計算,在這之前都只能叫虛擬化。
2、云計算的私有與公有
云計算大致分兩種:一個是私有云,一個是公有云。
私有云:把虛擬化和云化的這套軟件部署在別人的數據中心里面。使用私有云的用戶往往很有錢,自己買地建機房、自己買服務器,然后讓云廠商部署在自己這里。VMware后來除了虛擬化,也推出了云計算的產品,并且在私有云市場賺的盆滿缽滿。
公有云:把虛擬化和云化軟件部署在云廠商自己數據中心里面的,用戶不需要很大的投入,只要注冊一個賬號,就能在一個網頁上點一下創建一臺虛擬電腦。例如AWS即亞馬遜的公有云;例如國內的阿里云、騰訊云、網易云等。
云計算基本上實現了時間靈活性和空間靈活性;實現了計算、網絡、存儲資源的彈性。計算、網絡、存儲我們常稱為基礎設施Infranstracture, 因而這個階段的彈性稱為資源層面的彈性。管理資源的云平臺,我們稱為基礎設施服務,也就是我們常聽到的IaaS(Infranstracture As A Service)。
大數據
人工智能是典型的交叉學科,研究的內容集中在機器學習、自然語言處理、計算機視覺、機器人學、自動推理和知識表示等六大方向,目前機器學習的應用范圍還是比較廣泛的,比如自動駕駛、智慧醫療等領域都有廣泛的應用。人工智能的核心在于“思考”和“決策”,如何進行合理的思考和合理的行動是目前人工智能研究的主流方向。
1、大數據擁抱云計算
大數據里面的數據,就分三種類型,一種叫結構化的數據,一種叫非結構化的數據,還有一種叫半結構化的數據。
結構化的數據:即有固定格式和有限長度的數據。例如填的表格就是結構化的數據,國籍:中華人民共和國,民族:漢,性別:男,這都叫結構化數據。
非結構化的數據:現在非結構化的數據越來越多,就是不定長、無固定格式的數據,例如網頁,有時候非常長,有時候幾句話就沒了;例如語音,視頻都是非結構化的數據。
半結構化數據:是一些XML或者HTML的格式的,不從事技術的可能不了解,但也沒有關系。
其實數據本身不是有用的,必須要經過一定的處理。例如你每天跑步帶個手環收集的也是數據,網上這么多網頁也是數據,我們稱為Data。數據本身沒有什么用處,但數據里面包含一個很重要的東西,叫做信息(Information)。
數據十分雜亂,經過梳理和清洗,才能夠稱為信息。梳理和清洗就需要這幾個步驟:
第一個步驟叫數據的收集。
第二個步驟是數據的傳輸。
第三個步驟是數據的存儲。
第四個步驟是數據的處理和分析。
第五個步驟是對于數據的檢索和挖掘。
2、大數據時代
當數據量很小時,很少的幾臺機器就能解決。慢慢的,當數據量越來越大,最牛的服務器都解決不了問題時,怎么辦呢?這時就要聚合多臺機器的力量,大家齊心協力一起把這個事搞定,眾人拾柴火焰高。
一個小公司需要大數據平臺的時候,不需要采購一千臺機器,只要到公有云上一點,這一千臺機器都出來了,并且上面已經部署好了的大數據平臺,只要把數據放進去算就可以了。
云計算需要大數據,大數據需要云計算,二者就這樣結合了。
AI(人工智能)
人工智能是典型的交叉學科,研究的內容集中在機器學習、自然語言處理、計算機視覺、機器人學、自動推理和知識表示等六大方向,目前機器學習的應用范圍還是比較廣泛的,比如自動駕駛、智慧醫療等領域都有廣泛的應用。人工智能的核心在于“思考”和“決策”,如何進行合理的思考和合理的行動是目前人工智能研究的主流方向。
1、機器什么時候才能懂人心
雖說有了大數據,人的欲望卻不能夠滿足。雖說在大數據平臺里面有搜索引擎這個東西,想要什么東西一搜就出來了。但也存在這樣的情況:我想要的東西不會搜,表達不出來,搜索出來的又不是我想要的。
例如音樂軟件推薦了一首歌,這首歌我沒聽過,當然不知道名字,也沒法搜。但是軟件推薦給我,我的確喜歡,這就是搜索做不到的事情。當人們使用這種應用時,會發現機器知道我想要什么,而不是說當我想要時,去機器里面搜索。這個機器真像我的朋友一樣懂我,這就有點人工智能的意思了。
2、讓機器學會學習
怎么才能做到這一點呢?人們就想:我首先要告訴計算機人類的推理的能力。你看人重要的是什么?人和動物的區別在什么?就是能推理。要是把我這個推理的能力告訴機器,讓機器根據你的提問,推理出相應的回答,這樣多好?
其實目前人們慢慢地讓機器能夠做到一些推理了,例如證明數學公式。這是一個非常讓人驚喜的一個過程,機器竟然能夠證明數學公式。但慢慢又發現其實這個結果也沒有那么令人驚喜。因為大家發現了一個問題:數學公式非常嚴謹,推理過程也非常嚴謹,而且數學公式很容易拿機器來進行表達,程序也相對容易表達。
因此,僅僅告訴機器嚴格的推理是不夠的,還要告訴機器一些知識。
于是人們想到:機器是和人完全不一樣的物種,干脆讓機器自己學習好了。
機器怎么學習呢?既然機器的統計能力這么強,基于統計學習,一定能從大量的數字中發現一定的規律。
3、大數據與人工智能
如果我們把人工智能看成一個嗷嗷待哺擁有無限潛力的嬰兒,某一領域專業的海量的深度的數據就是喂養這個天才的奶粉。奶粉的數量決定了嬰兒是否能長大,而奶粉的質量則決定了嬰兒后續的智力發育水平。
人工智能需要大量的數據作為“思考”和“決策”的基礎,另一方面大數據也需要人工智能技術進行數據價值化操作,比如機器學習就是數據分析的常用方式。在大數據價值的兩個主要體現當中,數據應用的主要渠道之一就是智能體(人工智能產品),為智能體提供的數據量越大,智能體運行的效果就會越好,因為智能體通常需要大量的數據進行“訓練”和“驗證”,從而保障運行的可靠性和穩定性。
人工智能是程序算法和大數據結合的產物。而云計算是程序的算法部分,物聯網是收集大數據的根系的一部分。可以簡單的認為:人工智能=云計算+大數據。
在云計算與大數據成熟的沃土上誕生的AI可謂是天選之子,隨著新科技時代的到來,人們的生活將會更加緊密地與AI技術、大數據和云計算等新科技粘連在一起,在這種背景下三者的深度融合無疑會使AI與我們的生活之間聯系的更加密切。