成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

人工智能 機器學習 新聞
Matplotlib是一個流行的Python庫,可以很容易地用于創建數據可視化。

 前言

Matplotlib是一個流行的Python庫,可以很容易地用于創建數據可視化。然而,設置數據、參數、圖形和繪圖在每次執行新項目時都可能變得非常混亂和繁瑣。而且由于應用不同,我們不知道選擇哪一個圖例,比如直方圖,餅狀圖,曲線圖等等。這里有一個很棒的思維導圖,可以幫助您為工作選擇正確的可視化效果:

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

我們對于這張思維導圖中的主要圖例做一些解釋:

散點圖

散點圖非常適合顯示兩個變量之間的關系,因為您可以直接看到數據的原始分布。您還可以通過如下圖所示的對組進行顏色編碼來查看不同數據組的這種關系。

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

想要可視化三個變量之間的關系嗎?!完全沒有異議只需使用另一個參數(如點大小)對第三個變量進行編碼,如下面的第二個圖所示,我們把這個圖叫做冒泡圖。

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

散點圖函數舉例:

  1. scatter(x_data,y_data,s=10,color=color,alpha=0.75

線圖

當你能清楚地看到一個變量與另一個變量之間變化很大時,最好使用線圖。讓我們看看下面的圖來說明。我們可以清楚地看到,所有專業的百分比隨時間變化很大。用散點圖來繪制這些圖會非常雜亂,很難真正理解和看到發生了什么。直線圖非常適合這種情況,因為它基本上可以快速總結兩個變量(百分比和時間)的協方差。同樣,我們也可以通過顏色編碼來使用分組。

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

線圖代碼舉例:

  1. plot(x_data, y_data, lw = 2, color = '#539caf', alpha = 1

直方圖

直方圖對于查看(或真正發現)數據點的分布很有用。看看下面的柱狀圖,我們繪制了頻率和智商的柱狀圖。我們可以清楚地看到向中心的濃度和中值是什么。我們也可以看到它遵循一個高斯分布。使用條形圖(而不是散點圖)可以讓我們清楚地看到每個箱子頻率之間的相對差異。使用箱子(離散化)真的幫助我們看到“更大的畫面”,如果我們使用所有沒有離散箱子的數據點,在可視化中可能會有很多噪音,使我們很難看到到底發生了什么。

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

假設我們要比較數據中兩個變量的分布。有人可能會認為,你必須制作兩個獨立的直方圖,把它們放在一起比較。但是,實際上有一個更好的方法:我們可以用不同的透明度覆蓋直方圖。看看下面的圖。均勻分布的透明度設為0。5這樣我們就能看到它的背后。這允許使用直接查看同一圖上的兩個分布。

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

直方圖代碼舉例:

  1. hist(data, n_bins = n_bins, cumulative = cumulative, color = '#539caf'

條形圖

當您試圖將類別很少(可能少于10個)的分類數據可視化時,條形圖是最有效的。如果我們有太多的類別,那么圖中的條形圖就會非常混亂,很難理解。它們非常適合分類數據,因為您可以根據條形圖的大小;分類也很容易劃分和顏色編碼。我們將看到三種不同類型的條形圖:常規的、分組的和堆疊的:

為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

常規的條形圖代碼舉例:

  1. bar(x_data, y_data, color = '#539caf', align = 'center'
為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

分組圖代碼舉例:

  1. foriinrange(0,len(y_data_list)):    if i == 0:        bar(x_data,y_data_list[i],color=colors[i],align='center',label=y_data_names[i])else:  bar(x_data,y_data_list[i],color=colors[i],bottom=y_data_list[i-1],align='center',label=y_data_names[i]) 
為什么你覺得Matplotlib用起來困難?因為你還沒看過這個思維導圖

堆疊圖代碼舉例:

  1. for i in range(0, len(y_data_list)):bar(x_data+alteration[i],y_data_list[i],color=colors[i],label=y_data_names[i],width=ind_width) 

 

責任編輯:張燕妮 來源: 今日頭條
相關推薦

2021-03-23 10:08:02

編程互聯網數據科學

2022-05-09 08:56:27

Go淺拷貝接口

2020-01-06 15:00:43

Linux電腦發行版

2013-06-21 14:02:19

軟件開發方法

2015-11-17 09:53:58

數據分析師

2021-03-19 10:26:19

IT項目CIO數字化轉型

2018-10-23 09:00:00

Linux日志

2016-08-19 01:59:22

APPAPM用戶

2021-06-30 09:20:18

NuShell工具Linux

2017-05-31 15:27:54

2021-09-02 09:53:42

開發Redis配置

2021-10-26 09:40:29

人工智能AI機器人

2019-08-08 15:17:38

創業馬云自媒體

2021-02-27 10:38:56

Python結構數據

2019-01-10 16:52:26

華為

2019-09-16 20:00:52

C語言編程語言

2024-10-29 08:52:01

Go協作式調度

2020-06-23 14:09:49

枚舉JDK場景

2019-11-05 14:34:37

KubernetesLinux服務器

2022-01-25 12:41:31

ChromeResponse接口
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 91精品国产综合久久久久久丝袜 | 黄频视频 | 日本天堂视频 | 国产福利在线 | 精品久久久久久久久久久 | 成人深夜福利网站 | 欧美久久大片 | 久久成| 国产乱码精品一区二区三区中文 | 视频第一区 | 国产1区2区3区 | 久久草在线视频 | 国产一区二区在线看 | 国产三级一区二区三区 | 成人亚洲视频 | 日韩精品一区二区在线观看 | 日本精品久久久一区二区三区 | 色视频在线免费观看 | 亚洲人人 | 99国产精品99久久久久久粉嫩 | 99日韩| 欧美美女二区 | 碰碰视频 | 福利视频亚洲 | 天天草天天干 | 国产成人精品一区二区三区四区 | 成人在线观看免费爱爱 | 亚洲视频二区 | 五月综合激情网 | 免费观看一级黄色录像 | 毛片网站免费观看 | 亚洲欧美日韩电影 | 日韩欧美在线一区 | 天天看夜夜 | 亚洲狠狠 | 国产二区视频 | 嫩草黄色影院 | 欧美极品在线观看 | 中文字幕亚洲欧美日韩在线不卡 | 久久99蜜桃综合影院免费观看 | 精品国产精品三级精品av网址 |