成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

使用Lambda表達(dá)式編寫遞歸一:前言及基礎(chǔ)

開發(fā) 后端
最近比較輕閑,靜下心來學(xué)習(xí)了下相關(guān)的的一些理論,并深入思考,略有所悟,在此和大家分享下。本文及后續(xù)章節(jié)會(huì)用到相當(dāng)復(fù)雜的泛型及 lambda 表達(dá)式,請(qǐng)做好相關(guān)技術(shù)和心理準(zhǔn)備。

前言

這是一個(gè)比較古老的話題,三年半之前,老趙就此寫過一篇很文章《使用Lambda表達(dá)式編寫遞歸函數(shù)》。其中提出了偽遞歸的概念,提出了自己的解決方式,也引出了裝配腦袋 使用不動(dòng)點(diǎn)組合子 的解決辦法。此后好長一段時(shí)間,偽遞歸和不動(dòng)點(diǎn)組合子成了兩個(gè)園子里的兩大熱門話題。

當(dāng)年我也寫了篇文章《反駁 老趙 之 “偽”遞歸》參與了爭論,不過對(duì)老趙提出的解決方式及裝配腦袋的不動(dòng)點(diǎn)組合子思路,一直沒弄清楚。中間一段時(shí)間,工作忙,忘卻了。

最近比較輕閑,靜下心來學(xué)習(xí)了下相關(guān)的的一些理論,并深入思考,略有所悟,在此和大家分享下。

本文及后續(xù)章節(jié)會(huì)用到相當(dāng)復(fù)雜的泛型及 lambda 表達(dá)式,請(qǐng)做好相關(guān)技術(shù)和心理準(zhǔn)備。

使用 Lambda 表達(dá)式構(gòu)建遞歸函數(shù)

很多朋友認(rèn)為這很容易,隨手便可用 lambda 表達(dá)式寫出一個(gè)階乘遞歸:

  1. Func<intint> fact = x => x <= 1 ? 1 : x * fact(x - 1); 

不過,很抱歉,這行代碼是無法通過編譯的,VS 提示:使用了未賦值的變量 fact。

有種簡單的解決辦法,把上面這行代碼拆成兩行:

  1. Func<intint> fact = null;  
  2. fact = x => x <= 1 ? 1 : x * fact(x - 1); 

不過這種寫法也有問題,老趙說得比較清楚,我就不在贅述了,請(qǐng)查看《使用Lambda表達(dá)式編寫遞歸函數(shù)》一文中偽遞歸部分。

那么如何解決 lambda 表達(dá)式構(gòu)建遞歸函數(shù)的問題呢?根據(jù)函數(shù)式編程理論,我們可以使用不定點(diǎn)組合子。

在學(xué)習(xí)不定點(diǎn)組合子之前,需要先了解更基礎(chǔ) λ 演算。

λ 演算

λ 演算的基礎(chǔ)請(qǐng)大家參考維基百科:

http://zh.wikipedia.org/wiki/Lambda_演算

http://en.wikipedia.org/wiki/Lambda_calculus

非形式化的描述

請(qǐng)確保你已經(jīng)理解了文中幾個(gè)表達(dá)式的等價(jià)關(guān)系:

  1. (λf. f 3)(λx. x + 2) == (λx. x + 2) 3 == 3 + 2   
  2. (λx. λy. x - y) 7 2 == (λy.7 - y) 2 == 7 - 2 

還清楚知道函數(shù)應(yīng)用(application)的概念及其左結(jié)合性:

  1. f x y == (f x) y 

還有它的各種等價(jià)變換

  1. f x y == (f x) y = (f(x))y = (f(x))(y) = f(x)(y) 

歸約

并會(huì)運(yùn)用三個(gè)常用的規(guī)約(Reduction

1.α-變換α-conversion

2.β-歸約β-reduction

3.η-變換η-conversion

不動(dòng)點(diǎn)組合子

請(qǐng)參考:

http://zh.wikipedia.org/wiki/不動(dòng)點(diǎn)組合子

http://en.wikipedia.org/wiki/Fixed-point_combinator

定義

不動(dòng)點(diǎn)組合子(Fixed-point combinator,或不動(dòng)點(diǎn)算子,使用 FIX 表示)是計(jì)算其他函數(shù)的一個(gè)不動(dòng)點(diǎn)的高階函數(shù)。

不動(dòng)點(diǎn)算子具有以下特性,對(duì)于任何函數(shù) f 都有:

  1. FIX ff = f (FIX f) 

定義匿名的遞歸函數(shù)

不動(dòng)點(diǎn)組合子允許定義匿名的遞歸函數(shù),具體來說是將一個(gè)非遞歸的單步函數(shù)(只執(zhí)行遞歸中的一步,a single step of this recursion,使用 g 表示)轉(zhuǎn)換為遞歸函數(shù)。

如下是階乘的單步函數(shù)定義:

  1. g = λf. λn. (ISZERO n) 1 (MULT n (f (PRED n))) 

FIX g 可獲取到匿名的遞歸函數(shù):

  1. FIX g = λn. (ISZERO n) 1 (MULT n ((FIX g) (PRED n))) 

向 FIX g 的參數(shù) n 傳入值 5,可最終得出:

  1. FIX g 55 = 5 * (4 * (3 * (2 * (1 * 1)))) = 120 

常用的不定點(diǎn)組合子

不動(dòng)點(diǎn)組合子中最有名的(也可能是最簡單的)是 Y 組合子:

  1. Y = λf. (λx. f (x x)) (λx. f (x x)) 

另一個(gè)常見不動(dòng)點(diǎn)組合子是圖靈不動(dòng)點(diǎn)組合子(阿蘭·圖靈發(fā)現(xiàn)的):

  1. Θ = (λx. λy. (y (x x y))) (λx.λy.(y (x x y))) 

傳值調(diào)用(call-by-value)

在 λ 演算中,每個(gè)表達(dá)式(lambda term)都代表一個(gè)只有單獨(dú)參數(shù)的函數(shù),這個(gè)函數(shù)的參數(shù)本身也是一個(gè)只有單一參數(shù)的函數(shù),同時(shí),函數(shù)的值是又一個(gè)只有單一參數(shù)的函數(shù)。

根據(jù)此描述,可知 λ 演算中函數(shù)只有一個(gè)參數(shù),這個(gè)參數(shù)是一個(gè)函數(shù),而不是一個(gè)值。而對(duì)于我們常見的遞歸(階乘、斐波那契數(shù)列求值),參數(shù)都是值(自然數(shù))。兩者是不匹配的。

為了適當(dāng)傳值調(diào)用,需要將不動(dòng)點(diǎn)組合子 η-展開:

簡單而言 η-變換 是說 λx. f x 和 f 可以互相轉(zhuǎn)換。從 f 這種簡單形式 η-變換 為 λx. f x 復(fù)雜形式,稱為 η-展開

對(duì)于 Y 組合子,通常是將其中的 (x x) η-展開為  λy. x x y,由此得出傳值調(diào)用版本的 Y組合子(也稱為 Z 組合子):

  1. Y = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y)) 

如果不展開呢?會(huì)怎樣?

如果使用不展開的不動(dòng)點(diǎn)算子,也能寫出可編譯通過的代碼,但最終執(zhí)行會(huì)陷入死循環(huán),直至堆棧溢出。

小結(jié)

后續(xù)章節(jié)將使用以下符號(hào)和名稱,不再另行說明:

1.FIX:不動(dòng)點(diǎn)組合子

2.g:單步函數(shù)

3.n:表示遞歸函數(shù)的參數(shù)(在階乘、斐波那契數(shù)列求值中是一個(gè)自然數(shù))

對(duì)于 FIX、g、n:

1.FIX g: 將會(huì)生成對(duì)應(yīng)的遞歸函數(shù)

2.FIX g n: 將進(jìn)行遞歸運(yùn)算

λ 演算表達(dá)式與 c# lambda 表達(dá)式的對(duì)應(yīng)關(guān)系

λx. x + 2

λx. x + 2 在 c#中的 lambda 表達(dá)式可表式為:x => x+ 2;

假定 x 的 int 類型,可寫作:

  1. Func<int, int> f = x => x + 2; 

相應(yīng) (λx. x + 2) 1 可寫為:

  1. var result = f(1);    // 結(jié)果為 3 

λx. λy. x + y

復(fù)雜點(diǎn),λx. λy. x + y 用 c# 的 lambda 表達(dá)式表示為:x => y => x + y;

x, y 類型為均整數(shù)時(shí),可寫作:

  1. Func<int, Func<int, int>> f = x => y => x + y; 

相應(yīng) (λx. λy. x + y) 1 2 便是:

  1. var result = f(1)(2);     // 結(jié)果為 3 

λx. λy. λz. x + y + z

再復(fù)雜些,λx. λy. λz. x + y + z 表示為:x => y=> z => x + y + z,三個(gè)參數(shù)都為 int 時(shí) c# 代碼:

  1. Func<int, Func<int, Func<int, int>>> f = x => y => z => x + y + z; 

可如下調(diào)用:

  1. // (λx. λy. λz. x + y + z) 1 2 3  
  2. var result1 = f(1)(2)(3);    //結(jié)果為 6  
  3.  
  4. // (λx. λy. λz. x + y + z) 1  →  λy. λz. 1 + y + z   
  5. Func<int, Func<int, int>> g = f(1);   
  6. // (λy. λz. 1 + y + z) 2  →  λz. 1 + 2 + z  →  λz. 3 + z  
  7. Func<int, int> h = g(2);  
  8. // (λz. 3 + z) 3  →  3 + 3  →  6  
  9. var result2 = h(3);        // 結(jié)果為 6 

每 5 行,向 f 傳入一個(gè)常量 1,返回一個(gè)新的方法 g;再經(jīng)過第 7 行,向 g 傳入常量 2,再次返回一個(gè)新方法 h。

方法 h 只能接受一個(gè)參數(shù),***得出 h(3) = 6。

為什么不是  (x, y, z) => x + y + z?

也許你會(huì)有疑問,不就是 x、y、z 三個(gè)整數(shù)加起來嘛,為什么搞這么復(fù)雜,像下面這樣不是更簡單嗎?

  1. Func<int, int, int, int> f = (x, y, z) => x + y + z;  
  2. var result = f(1, 2, 3); 

確實(shí)簡單,不過:

在 λ 演算中,每個(gè)表達(dá)式(lambda term)都代表一個(gè)只有單獨(dú)參數(shù)的函數(shù),這個(gè)函數(shù)的參數(shù)本身也是一個(gè)只有單一參數(shù)的函數(shù),同時(shí),函數(shù)的值是又一個(gè)只有單一參數(shù)的函數(shù)。

注意都是只有一個(gè)參數(shù),對(duì)應(yīng)到 c# 的 lambda 表達(dá)式,也應(yīng)是一個(gè)參數(shù),所以是:x => y=> z => x + y + z。

總結(jié)

λ 演算表達(dá)式 c# lambda 表達(dá)式
λx. x + 2 x => x+ 2
λx. λy. x + y x => y => x + y
λx. λy. λz. x + y + z x => y=> z => x + y + z

好像有些規(guī)律:對(duì)于一個(gè) Lambda terms,去掉“λ”并把“.”替換為”=>”便可變成對(duì)應(yīng) lambda 表達(dá)式。(注意,這個(gè)規(guī)律不嚴(yán)謹(jǐn)!)

練習(xí)一下,看看下面這個(gè)如何轉(zhuǎn)為 lambda 表達(dá)式:

  1. λx. λn. (g (x x) n) 

先對(duì)它進(jìn)行一步演算得出:

  1. λx. λn. (g (x(x)) (n))  

運(yùn)用上的的規(guī)律,可以寫出 lambda 表達(dá)式:x => n => g((x(x))(n)

對(duì)于復(fù)雜點(diǎn)的如:λx. f ( λv. (x x) v),這條規(guī)律就不適用了。文后續(xù)部分會(huì)通過演算繞開這種復(fù)雜的轉(zhuǎn)換,不對(duì)此進(jìn)行討論。

理解本文中的泛型和 lambda 表達(dá)式

對(duì)于上一部分使用的泛型和 lambda 表達(dá)式,尤其是下面這行代碼,你需要花點(diǎn)時(shí)間去理理思路(因?yàn)楹罄m(xù)章節(jié)中泛型要遠(yuǎn)比此復(fù)雜):

  1. Func<int, Func<int, Func<int, int>>> f = x => y => z => x + y + z; 

如果對(duì)你對(duì)泛型和 lambda 認(rèn)識(shí)不是非常深刻的話,難度有點(diǎn)大,不妨先從下面這個(gè)簡單點(diǎn)的開始:

  1. Func<int, Func<int, int>> f = x => y => x + y; 

換種寫法,或許有助于理解:

  1. Func<int, Func<int, int>>  f = x => {                
  2.     Func<int, int> g =  y => { return x + y ;};  
  3.     return g;  
  4. }; 

本文簡單闡述了 lambda 構(gòu)建遞歸函數(shù)的問題,粗略提及 λ 演算及不動(dòng)點(diǎn)組合子的知識(shí),并總結(jié)了下 λ 演算表達(dá)式與 c# lambda 表達(dá)式的對(duì)應(yīng)關(guān)系。

原文鏈接:http://www.cnblogs.com/ldp615/archive/2013/04/09/recursive-lambda-expressions-1.html

責(zé)任編輯:張偉 來源: 博客園
相關(guān)推薦

2013-04-10 10:58:19

LambdaC#

2009-08-31 17:11:37

Lambda表達(dá)式

2009-10-12 10:11:08

Lambda表達(dá)式編寫

2009-09-15 17:30:00

Linq Lambda

2009-08-10 09:41:07

.NET Lambda

2009-09-09 13:01:33

LINQ Lambda

2009-09-15 15:18:00

Linq Lambda

2022-12-05 09:31:51

接口lambda表達(dá)式

2009-09-11 09:48:27

Linq Lambda

2023-11-02 08:25:58

C++Lambda

2009-08-27 09:44:59

C# Lambda表達(dá)

2009-09-17 09:44:54

Linq Lambda

2009-09-17 10:40:22

Linq Lambda

2012-06-26 10:03:58

JavaJava 8lambda

2009-04-29 09:05:59

Lambda抽象代表.NET

2023-09-25 13:28:14

C++Lambda

2024-03-25 13:46:12

C#Lambda編程

2013-04-07 15:44:26

Java8Lambda

2009-09-09 17:14:17

Linq lambda

2009-08-27 09:57:50

C# Lambda表達(dá)
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)

主站蜘蛛池模板: 亚洲精品福利在线 | 最新日韩在线 | 亚洲精品二三区 | 天天艹天天干天天 | 国产中文在线 | 成人18亚洲xxoo | 午夜激情影院 | 福利视频网站 | 欧美精品一区二区三区在线 | 国产黄色一级电影 | 国产在线不卡 | 国产精品成人一区 | 日韩在线不卡视频 | 亚洲成人免费电影 | 中日韩毛片 | 精品一区二区三区91 | 精品中文字幕一区二区三区 | 国产又色又爽又黄又免费 | 免费看的黄网站 | 九色网址 | 国产高清久久久 | 国产伊人精品 | 欧美一级毛片在线播放 | 国产精品日日摸夜夜添夜夜av | 97伦理影院| av在线成人 | 日韩在线播放网址 | 日韩成人在线观看 | 成人妇女免费播放久久久 | 99国产精品久久久久老师 | 九九热精 | 久久成人亚洲 | 日韩成人高清 | 一区二区三区视频在线免费观看 | 亚洲精品在线视频 | 美国a级毛片免费视频 | 黑人巨大精品欧美一区二区免费 | 干干干日日日 | 成人免费毛片在线观看 | 国产黄色大片在线免费观看 | 成人av网站在线观看 |